NeRF


2022-10-01 更新

Fast Dynamic Radiance Fields with Time-Aware Neural Voxels

Authors:Jiemin Fang, Taoran Yi, Xinggang Wang, Lingxi Xie, Xiaopeng Zhang, Wenyu Liu, Matthias Nießner, Qi Tian

Neural radiance fields (NeRF) have shown great success in modeling 3D scenes and synthesizing novel-view images. However, most previous NeRF methods take much time to optimize one single scene. Explicit data structures, e.g. voxel features, show great potential to accelerate the training process. However, voxel features face two big challenges to be applied to dynamic scenes, i.e. modeling temporal information and capturing different scales of point motions. We propose a radiance field framework by representing scenes with time-aware voxel features, named as TiNeuVox. A tiny coordinate deformation network is introduced to model coarse motion trajectories and temporal information is further enhanced in the radiance network. A multi-distance interpolation method is proposed and applied on voxel features to model both small and large motions. Our framework significantly accelerates the optimization of dynamic radiance fields while maintaining high rendering quality. Empirical evaluation is performed on both synthetic and real scenes. Our TiNeuVox completes training with only 8 minutes and 8-MB storage cost while showing similar or even better rendering performance than previous dynamic NeRF methods.
PDF SIGGRAPH Asia 2022. Project page: https://jaminfong.cn/tineuvox

点此查看论文截图

Baking in the Feature: Accelerating Volumetric Segmentation by Rendering Feature Maps

Authors:Kenneth Blomqvist, Lionel Ott, Jen Jen Chung, Roland Siegwart

Methods have recently been proposed that densely segment 3D volumes into classes using only color images and expert supervision in the form of sparse semantically annotated pixels. While impressive, these methods still require a relatively large amount of supervision and segmenting an object can take several minutes in practice. Such systems typically only optimize their representation on the particular scene they are fitting, without leveraging any prior information from previously seen images. In this paper, we propose to use features extracted with models trained on large existing datasets to improve segmentation performance. We bake this feature representation into a Neural Radiance Field (NeRF) by volumetrically rendering feature maps and supervising on features extracted from each input image. We show that by baking this representation into the NeRF, we make the subsequent classification task much easier. Our experiments show that our method achieves higher segmentation accuracy with fewer semantic annotations than existing methods over a wide range of scenes.
PDF

点此查看论文截图

OmniNeRF: Hybriding Omnidirectional Distance and Radiance fields for Neural Surface Reconstruction

Authors:Jiaming Shen, Bolin Song, Zirui Wu, Yi Xu

3D reconstruction from images has wide applications in Virtual Reality and Automatic Driving, where the precision requirement is very high. Ground-breaking research in the neural radiance field (NeRF) by utilizing Multi-Layer Perceptions has dramatically improved the representation quality of 3D objects. Some later studies improved NeRF by building truncated signed distance fields (TSDFs) but still suffer from the problem of blurred surfaces in 3D reconstruction. In this work, this surface ambiguity is addressed by proposing a novel way of 3D shape representation, OmniNeRF. It is based on training a hybrid implicit field of Omni-directional Distance Field (ODF) and neural radiance field, replacing the apparent density in NeRF with omnidirectional information. Moreover, we introduce additional supervision on the depth map to further improve reconstruction quality. The proposed method has been proven to effectively deal with NeRF defects at the edges of the surface reconstruction, providing higher quality 3D scene reconstruction results.
PDF Accepted by CMSDA 2022

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录