2022-10-01 更新
DPNet: Dual-Path Network for Real-time Object Detection with Lightweight Attention
Authors:Quan Zhou, Huimin Shi, Weikang Xiang, Bin Kang, Xiaofu Wu, Longin Jan Latecki
The recent advances of compressing high-accuracy convolution neural networks (CNNs) have witnessed remarkable progress for real-time object detection. To accelerate detection speed, lightweight detectors always have few convolution layers using single-path backbone. Single-path architecture, however, involves continuous pooling and downsampling operations, always resulting in coarse and inaccurate feature maps that are disadvantageous to locate objects. On the other hand, due to limited network capacity, recent lightweight networks are often weak in representing large scale visual data. To address these problems, this paper presents a dual-path network, named DPNet, with a lightweight attention scheme for real-time object detection. The dual-path architecture enables us to parallelly extract high-level semantic features and low-level object details. Although DPNet has nearly duplicated shape with respect to single-path detectors, the computational costs and model size are not significantly increased. To enhance representation capability, a lightweight self-correlation module (LSCM) is designed to capture global interactions, with only few computational overheads and network parameters. In neck, LSCM is extended into a lightweight crosscorrelation module (LCCM), capturing mutual dependencies among neighboring scale features. We have conducted exhaustive experiments on MS COCO and Pascal VOC 2007 datasets. The experimental results demonstrate that DPNet achieves state-of the-art trade-off between detection accuracy and implementation efficiency. Specifically, DPNet achieves 30.5% AP on MS COCO test-dev and 81.5% mAP on Pascal VOC 2007 test set, together mwith nearly 2.5M model size, 1.04 GFLOPs, and 164 FPS and 196 FPS for 320 x 320 input images of two datasets.
PDF
点此查看论文截图
BED: A Real-Time Object Detection System for Edge Devices
Authors:Guanchu Wang, Zaid Pervaiz Bhat, Zhimeng Jiang, Yi-Wei Chen, Daochen Zha, Alfredo Costilla Reyes, Afshin Niktash, Gorkem Ulkar, Erman Okman, Xuanting Cai, Xia Hu
Deploying deep neural networks~(DNNs) on edge devices provides efficient and effective solutions for the real-world tasks. Edge devices have been used for collecting a large volume of data efficiently in different domains. DNNs have been an effective tool for data processing and analysis. However, designing DNNs on edge devices is challenging due to the limited computational resources and memory. To tackle this challenge, we demonstrate Object Detection System for Edge Devices~(BED) on the MAX78000 DNN accelerator. It integrates on-device DNN inference with a camera and an LCD display for image acquisition and detection exhibition, respectively. BED is a concise, effective and detailed solution, including model training, quantization, synthesis and deployment. The entire repository is open-sourced on Github, including a Graphical User Interface~(GUI) for on-chip debugging. Experiment results indicate that BED can produce accurate detection with a 300-KB tiny DNN model, which takes only 91.9 ms of inference time and 1.845 mJ of energy. The real-time detection is available at YouTube.
PDF
点此查看论文截图
InterCap: Joint Markerless 3D Tracking of Humans and Objects in Interaction
Authors:Yinghao Huang, Omid Tehari, Michael J. Black, Dimitrios Tzionas
Humans constantly interact with daily objects to accomplish tasks. To understand such interactions, computers need to reconstruct these from cameras observing whole-body interaction with scenes. This is challenging due to occlusion between the body and objects, motion blur, depth/scale ambiguities, and the low image resolution of hands and graspable object parts. To make the problem tractable, the community focuses either on interacting hands, ignoring the body, or on interacting bodies, ignoring hands. The GRAB dataset addresses dexterous whole-body interaction but uses marker-based MoCap and lacks images, while BEHAVE captures video of body object interaction but lacks hand detail. We address the limitations of prior work with InterCap, a novel method that reconstructs interacting whole-bodies and objects from multi-view RGB-D data, using the parametric whole-body model SMPL-X and known object meshes. To tackle the above challenges, InterCap uses two key observations: (i) Contact between the hand and object can be used to improve the pose estimation of both. (ii) Azure Kinect sensors allow us to set up a simple multi-view RGB-D capture system that minimizes the effect of occlusion while providing reasonable inter-camera synchronization. With this method we capture the InterCap dataset, which contains 10 subjects (5 males and 5 females) interacting with 10 objects of various sizes and affordances, including contact with the hands or feet. In total, InterCap has 223 RGB-D videos, resulting in 67,357 multi-view frames, each containing 6 RGB-D images. Our method provides pseudo ground-truth body meshes and objects for each video frame. Our InterCap method and dataset fill an important gap in the literature and support many research directions. Our data and code are areavailable for research purposes.
PDF To appear at GCPR2022
点此查看论文截图
YOLO v3: Visual and Real-Time Object Detection Model for Smart Surveillance Systems(3s)
Authors:Kanyifeechukwu Jane Oguine, Ozioma Collins Oguine, Hashim Ibrahim Bisallah
Can we see it all? Do we know it All? These are questions thrown to human beings in our contemporary society to evaluate our tendency to solve problems. Recent studies have explored several models in object detection; however, most have failed to meet the demand for objectiveness and predictive accuracy, especially in developing and under-developed countries. Consequently, several global security threats have necessitated the development of efficient approaches to tackle these issues. This paper proposes an object detection model for cyber-physical systems known as Smart Surveillance Systems (3s). This research proposes a 2-phase approach, highlighting the advantages of YOLO v3 deep learning architecture in real-time and visual object detection. A transfer learning approach was implemented for this research to reduce training time and computing resources. The dataset utilized for training the model is the MS COCO dataset which contains 328,000 annotated image instances. Deep learning techniques such as Pre-processing, Data pipelining, and detection was implemented to improve efficiency. Compared to other novel research models, the proposed model’s results performed exceedingly well in detecting WILD objects in surveillance footages. An accuracy of 99.71% was recorded, with an improved mAP of 61.5.
PDF 8 pages, 12 figures, 2 tables
点此查看论文截图
Field-of-View IoU for Object Detection in 360° Images
Authors:Miao Cao, Satoshi Ikehata, Kiyoharu Aizawa
360{\deg} cameras have gained popularity over the last few years. In this paper, we propose two fundamental techniques — Field-of-View IoU (FoV-IoU) and 360Augmentation for object detection in 360{\deg} images. Although most object detection neural networks designed for the perspective images are applicable to 360{\deg} images in equirectangular projection (ERP) format, their performance deteriorates owing to the distortion in ERP images. Our method can be readily integrated with existing perspective object detectors and significantly improves the performance. The FoV-IoU computes the intersection-over-union of two Field-of-View bounding boxes in a spherical image which could be used for training, inference, and evaluation while 360Augmentation is a data augmentation technique specific to 360{\deg} object detection task which randomly rotates a spherical image and solves the bias due to the sphere-to-plane projection. We conduct extensive experiments on the 360indoor dataset with different types of perspective object detectors and show the consistent effectiveness of our method.
PDF
点此查看论文截图
Feature-based model selection for object detection from point cloud data
Authors:Kairi Tokuda, Ryoichi Shinkuma, Takehiro Sato, Eiji Oki
Smart monitoring using three-dimensional (3D) image sensors has been attracting attention in the context of smart cities. In smart monitoring, object detection from point cloud data acquired by 3D image sensors is implemented for detecting moving objects such as vehicles and pedestrians to ensure safety on the road. However, the features of point cloud data are diversified due to the characteristics of light detection and ranging (LIDAR) units used as 3D image sensors or the install position of the 3D image sensors. Although a variety of deep learning (DL) models for object detection from point cloud data have been studied to date, no research has considered how to use multiple DL models in accordance with the features of the point cloud data. In this work, we propose a feature-based model selection framework that creates various DL models by using multiple DL methods and by utilizing training data with pseudo incompleteness generated by two artificial techniques: sampling and noise adding. It selects the most suitable DL model for the object detection task in accordance with the features of the point cloud data acquired in the real environment. To demonstrate the effectiveness of the proposed framework, we compare the performance of multiple DL models using benchmark datasets created from the KITTI dataset and present example results of object detection obtained through a real outdoor experiment. Depending on the situation, the detection accuracy varies up to 32% between DL models, which confirms the importance of selecting an appropriate DL model according to the situation.
PDF Submitted to IEICE Transactions on Communications
点此查看论文截图
Prompt-Matched Semantic Segmentation
Authors:Lingbo Liu, Bruce X. B. Yu, Jianlong Chang, Qi Tian, Chang-Wen Chen
The objective of this work is to explore how to effectively and efficiently adapt pre-trained visual foundation models to downstream tasks, e.g., image semantic segmentation. Conventional methods usually fine-tuned the entire networks for each specific dataset, which will be burdensome to store massive parameters of these networks. Several recent works attempted to insert some extra trainable parameters into the frozen networks to learn visual prompts for parameter-efficient tuning. However, these works showed poor generality as they were designed specifically for Transformers. Moreover, using limited information in these schemes, they exhibited a poor capacity to learn effective prompts. To alleviate these issues, we propose a novel Inter-Stage Prompt-Matched Framework for generic and effective visual prompt tuning. Specifically, to ensure generality, we divide the pre-trained backbone with frozen parameters into multiple stages and perform prompt learning between different stages, which makes the proposed scheme applicable to various architectures of CNN and Transformer. For effective tuning, a lightweight Semantic-aware Prompt Matcher (SPM) is designed to progressively learn reasonable prompts with a recurrent mechanism, guided by the rich information of interim semantic maps. Working as a deep matched filter of representation learning, the proposed SPM can well transform the output of the previous stage into a desirable input for the next stage, thus achieving the better matching/stimulating for the pre-trained knowledge. Finally, we apply the proposed method to handle various semantic segmentation tasks. Extensive experiments on five benchmarks show that the proposed scheme can achieve a promising trade-off between parameter efficiency and performance effectiveness.
PDF
点此查看论文截图
OBBStacking: An Ensemble Method for Remote Sensing Object Detection
Authors:Haoning Lin, Changhao Sun, Yunpeng Liu
Ensemble methods are a reliable way to combine several models to achieve superior performance. However, research on the application of ensemble methods in the remote sensing object detection scenario is mostly overlooked. Two problems arise. First, one unique characteristic of remote sensing object detection is the Oriented Bounding Boxes (OBB) of the objects and the fusion of multiple OBBs requires further research attention. Second, the widely used deep learning object detectors provide a score for each detected object as an indicator of confidence, but how to use these indicators effectively in an ensemble method remains a problem. Trying to address these problems, this paper proposes OBBStacking, an ensemble method that is compatible with OBBs and combines the detection results in a learned fashion. This ensemble method helps take 1st place in the Challenge Track \textit{Fine-grained Object Recognition in High-Resolution Optical Images}, which was featured in \textit{2021 Gaofen Challenge on Automated High-Resolution Earth Observation Image Interpretation}. The experiments on DOTA dataset and FAIR1M dataset demonstrate the improved performance of OBBStacking and the features of OBBStacking are analyzed.
PDF
点此查看论文截图
Access Control with Encrypted Feature Maps for Object Detection Models
Authors:Teru Nagamori, Hiroki Ito, AprilPyone MaungMaung, Hitoshi Kiya
In this paper, we propose an access control method with a secret key for object detection models for the first time so that unauthorized users without a secret key cannot benefit from the performance of trained models. The method enables us not only to provide a high detection performance to authorized users but to also degrade the performance for unauthorized users. The use of transformed images was proposed for the access control of image classification models, but these images cannot be used for object detection models due to performance degradation. Accordingly, in this paper, selected feature maps are encrypted with a secret key for training and testing models, instead of input images. In an experiment, the protected models allowed authorized users to obtain almost the same performance as that of non-protected models but also with robustness against unauthorized access without a key.
PDF arXiv admin note: substantial text overlap with arXiv:2206.05422
点此查看论文截图
Suppress with a Patch: Revisiting Universal Adversarial Patch Attacks against Object Detection
Authors:Svetlana Pavlitskaya, Jonas Hendl, Sebastian Kleim, Leopold Müller, Fabian Wylczoch, J. Marius Zöllner
Adversarial patch-based attacks aim to fool a neural network with an intentionally generated noise, which is concentrated in a particular region of an input image. In this work, we perform an in-depth analysis of different patch generation parameters, including initialization, patch size, and especially positioning a patch in an image during training. We focus on the object vanishing attack and run experiments with YOLOv3 as a model under attack in a white-box setting and use images from the COCO dataset. Our experiments have shown, that inserting a patch inside a window of increasing size during training leads to a significant increase in attack strength compared to a fixed position. The best results were obtained when a patch was positioned randomly during training, while patch position additionally varied within a batch.
PDF Accepted for publication at ICECCME 2022
点此查看论文截图
Few-Shot Object Detection with Fully Cross-Transformer
Authors:Guangxing Han, Jiawei Ma, Shiyuan Huang, Long Chen, Shih-Fu Chang
Few-shot object detection (FSOD), with the aim to detect novel objects using very few training examples, has recently attracted great research interest in the community. Metric-learning based methods have been demonstrated to be effective for this task using a two-branch based siamese network, and calculate the similarity between image regions and few-shot examples for detection. However, in previous works, the interaction between the two branches is only restricted in the detection head, while leaving the remaining hundreds of layers for separate feature extraction. Inspired by the recent work on vision transformers and vision-language transformers, we propose a novel Fully Cross-Transformer based model (FCT) for FSOD by incorporating cross-transformer into both the feature backbone and detection head. The asymmetric-batched cross-attention is proposed to aggregate the key information from the two branches with different batch sizes. Our model can improve the few-shot similarity learning between the two branches by introducing the multi-level interactions. Comprehensive experiments on both PASCAL VOC and MSCOCO FSOD benchmarks demonstrate the effectiveness of our model.
PDF CVPR 2022 (Oral). Code is available at https://github.com/GuangxingHan/FCT
点此查看论文截图
DirectTracker: 3D Multi-Object Tracking Using Direct Image Alignment and Photometric Bundle Adjustment
Authors:Mariia Gladkova, Nikita Korobov, Nikolaus Demmel, Aljoša Ošep, Laura Leal-Taixé, Daniel Cremers
Direct methods have shown excellent performance in the applications of visual odometry and SLAM. In this work we propose to leverage their effectiveness for the task of 3D multi-object tracking. To this end, we propose DirectTracker, a framework that effectively combines direct image alignment for the short-term tracking and sliding-window photometric bundle adjustment for 3D object detection. Object proposals are estimated based on the sparse sliding-window pointcloud and further refined using an optimization-based cost function that carefully combines 3D and 2D cues to ensure consistency in image and world space. We propose to evaluate 3D tracking using the recently introduced higher-order tracking accuracy (HOTA) metric and the generalized intersection over union similarity measure to mitigate the limitations of the conventional use of intersection over union for the evaluation of vision-based trackers. We perform evaluation on the KITTI Tracking benchmark for the Car class and show competitive performance in tracking objects both in 2D and 3D.
PDF In Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS), 2022