检测/分割/跟踪


2022-09-29 更新

Adversarial Dual-Student with Differentiable Spatial Warping for Semi-Supervised Semantic Segmentation

Authors:Cong Cao, Tianwei Lin, Dongliang He, Fu Li, Huanjing Yue, Jingyu Yang, Errui Ding

A common challenge posed to robust semantic segmentation is the expensive data annotation cost. Existing semi-supervised solutions show great potential for solving this problem. Their key idea is constructing consistency regularization with unsupervised data augmentation from unlabeled data for model training. The perturbations for unlabeled data enable the consistency training loss, which benefits semi-supervised semantic segmentation. However, these perturbations destroy image context and introduce unnatural boundaries, which is harmful for semantic segmentation. Besides, the widely adopted semi-supervised learning framework, i.e. mean-teacher, suffers performance limitation since the student model finally converges to the teacher model. In this paper, first of all, we propose a context friendly differentiable geometric warping to conduct unsupervised data augmentation; secondly, a novel adversarial dual-student framework is proposed to improve the Mean-Teacher from the following two aspects: (1) dual student models are learned independently except for a stabilization constraint to encourage exploiting model diversities; (2) adversarial training scheme is applied to both students and the discriminators are resorted to distinguish reliable pseudo-label of unlabeled data for self-training. Effectiveness is validated via extensive experiments on PASCAL VOC2012 and Cityscapes. Our solution significantly improves the performance and state-of-the-art results are achieved on both datasets. Remarkably, compared with fully supervision, our solution achieves comparable mIoU of 73.4% using only 12.5% annotated data on PASCAL VOC2012. Our codes and models are available at https://github.com/cao-cong/ADS-SemiSeg.
PDF Accepted by IEEE Transactions on Circuits and Systems for Video Technology (TCSVT)

点此查看论文截图

CrossDTR: Cross-view and Depth-guided Transformers for 3D Object Detection

Authors:Ching-Yu Tseng, Yi-Rong Chen, Hsin-Ying Lee, Tsung-Han Wu, Wen-Chin Chen, Winston Hsu

To achieve accurate 3D object detection at a low cost for autonomous driving, many multi-camera methods have been proposed and solved the occlusion problem of monocular approaches. However, due to the lack of accurate estimated depth, existing multi-camera methods often generate multiple bounding boxes along a ray of depth direction for difficult small objects such as pedestrians, resulting in an extremely low recall. Furthermore, directly applying depth prediction modules to existing multi-camera methods, generally composed of large network architectures, cannot meet the real-time requirements of self-driving applications. To address these issues, we propose Cross-view and Depth-guided Transformers for 3D Object Detection, CrossDTR. First, our lightweight depth predictor is designed to produce precise object-wise sparse depth maps and low-dimensional depth embeddings without extra depth datasets during supervision. Second, a cross-view depth-guided transformer is developed to fuse the depth embeddings as well as image features from cameras of different views and generate 3D bounding boxes. Extensive experiments demonstrated that our method hugely surpassed existing multi-camera methods by 10 percent in pedestrian detection and about 3 percent in overall mAP and NDS metrics. Also, computational analyses showed that our method is 5 times faster than prior approaches. Our codes will be made publicly available at https://github.com/sty61010/CrossDTR.
PDF

点此查看论文截图

Strong Instance Segmentation Pipeline for MMSports Challenge

Authors:Bo Yan, Fengliang Qi, Zhuang Li, Yadong Li, Hongbin Wang

The goal of ACM MMSports2022 DeepSportRadar Instance Segmentation Challenge is to tackle the segmentation of individual humans including players, coaches and referees on a basketball court. And the main characteristics of this challenge are there is a high level of occlusions between players and the amount of data is quite limited. In order to address these problems, we designed a strong instance segmentation pipeline. Firstly, we employed a proper data augmentation strategy for this task mainly including photometric distortion transform and copy-paste strategy, which can generate more image instances with a wider distribution. Secondly, we employed a strong segmentation model, Hybrid Task Cascade based detector on the Swin-Base based CBNetV2 backbone, and we add MaskIoU head to HTCMaskHead that can simply and effectively improve the performance of instance segmentation. Finally, the SWA training strategy was applied to improve the performance further. Experimental results demonstrate the proposed pipeline can achieve a competitive result on the DeepSportRadar challenge, with 0.768AP@0.50:0.95 on the challenge set. Source code is available at https://github.com/YJingyu/Instanc_Segmentation_Pro.
PDF The first place solution for ACM MMSports2022 DeepSportRadar Instance Segmentation Challenge

点此查看论文截图

View-aware Salient Object Detection for 360° Omnidirectional Image

Authors:Junjie Wu, Changqun Xia, Tianshu Yu, Jia Li

Image-based salient object detection (ISOD) in 360{\deg} scenarios is significant for understanding and applying panoramic information. However, research on 360{\deg} ISOD has not been widely explored due to the lack of large, complex, high-resolution, and well-labeled datasets. Towards this end, we construct a large scale 360{\deg} ISOD dataset with object-level pixel-wise annotation on equirectangular projection (ERP), which contains rich panoramic scenes with not less than 2K resolution and is the largest dataset for 360{\deg} ISOD by far to our best knowledge. By observing the data, we find current methods face three significant challenges in panoramic scenarios: diverse distortion degrees, discontinuous edge effects and changeable object scales. Inspired by humans’ observing process, we propose a view-aware salient object detection method based on a Sample Adaptive View Transformer (SAVT) module with two sub-modules to mitigate these issues. Specifically, the sub-module View Transformer (VT) contains three transform branches based on different kinds of transformations to learn various features under different views and heighten the model’s feature toleration of distortion, edge effects and object scales. Moreover, the sub-module Sample Adaptive Fusion (SAF) is to adjust the weights of different transform branches based on various sample features and make transformed enhanced features fuse more appropriately. The benchmark results of 20 state-of-the-art ISOD methods reveal the constructed dataset is very challenging. Moreover, exhaustive experiments verify the proposed approach is practical and outperforms the state-of-the-art methods.
PDF This paper has been accepted by IEEE Transactions on Multimedia

点此查看论文截图

Densely Constrained Depth Estimator for Monocular 3D Object Detection

Authors:Yingyan Li, Yuntao Chen, Jiawei He, Zhaoxiang Zhang

Estimating accurate 3D locations of objects from monocular images is a challenging problem because of lacking depth. Previous work shows that utilizing the object’s keypoint projection constraints to estimate multiple depth candidates boosts the detection performance. However, the existing methods can only utilize vertical edges as projection constraints for depth estimation. So these methods only use a small number of projection constraints and produce insufficient depth candidates, leading to inaccurate depth estimation. In this paper, we propose a method that utilizes dense projection constraints from edges of any direction. In this way, we employ much more projection constraints and produce considerable depth candidates. Besides, we present a graph matching weighting module to merge the depth candidates. The proposed method DCD (Densely Constrained Detector) achieves state-of-the-art performance on the KITTI and WOD benchmarks. Code is released at https://github.com/BraveGroup/DCD.
PDF Accepted by ECCV2022

点此查看论文截图

FreeSeg: Free Mask from Interpretable Contrastive Language-Image Pretraining for Semantic Segmentation

Authors:Yi Li, Huifeng Yao, Hualiang Wang, Xiaomeng Li

Fully supervised semantic segmentation learns from dense masks, which requires heavy annotation cost for closed set. In this paper, we use natural language as supervision without any pixel-level annotation for open world segmentation. We call the proposed framework as FreeSeg, where the mask is freely available from raw feature map of pretraining model. Compared with zero-shot or openset segmentation, FreeSeg doesn’t require any annotated masks, and it widely predicts categories beyond class-agnostic unsupervised segmentation. Specifically, FreeSeg obtains free mask from Image-Text Similarity Map (ITSM) of Interpretable Contrastive Language-Image Pretraining (ICLIP). And our core improvements are the smoothed min pooling for dense ICLIP, with the partial label and pixel strategies for segmentation. Furthermore, FreeSeg is very straight forward without complex design like grouping, clustering or retrieval. Besides the simplicity, the performances of FreeSeg surpass previous state-of-the-art at large margins, e.g. 13.4% higher at mIoU on VOC dataset in the same settings.
PDF Conference paper, segmentation via ICLIP

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录