2022-09-27 更新
Learning Chess With Language Models and Transformers
Authors:Michael DeLeo, Erhan Guven
Representing a board game and its positions by text-based notation enables the possibility of NLP applications. Language models, can help gain insight into a variety of interesting problems such as unsupervised learning rules of a game, detecting player behavior patterns, player attribution, and ultimately learning the game to beat state of the art. In this study, we applied BERT models, first to the simple Nim game to analyze its performance in the presence of noise in a setup of a few-shot learning architecture. We analyzed the model performance via three virtual players, namely Nim Guru, Random player, and Q-learner. In the second part, we applied the game learning language model to the chess game, and a large set of grandmaster games with exhaustive encyclopedia openings. Finally, we have shown that model practically learns the rules of the chess game and can survive games against Stockfish at a category-A rating level.
PDF Conference Paper
点此查看论文截图
Collaboration of Pre-trained Models Makes Better Few-shot Learner
Authors:Renrui Zhang, Hanqiu Deng, Bohao Li, Wei Zhang, Hao Dong, Hongsheng Li, Peng Gao, Yu Qiao
Few-shot classification requires deep neural networks to learn generalized representations only from limited training images, which is challenging but significant in low-data regimes. Recently, CLIP-based methods have shown promising few-shot performance benefited from the contrastive language-image pre-training. Based on this point, we question if the large-scale pre-training can alleviate the few-shot data deficiency and also assist the representation learning by the pre-learned knowledge. In this paper, we propose CoMo, a Collaboration of pre-trained Models that incorporates diverse prior knowledge from various pre-training paradigms for better few-shot learning. Our CoMo includes: CLIP’s language-contrastive knowledge, DINO’s vision-contrastive knowledge, and DALL-E’s language-generative knowledge. Specifically, CoMo works in two aspects: few-shot data expansion and diverse knowledge ensemble. For one, we generate synthetic images via zero-shot DALL-E to enrich the few-shot training data without any manpower. For the other, we introduce a learnable Multi-Knowledge Adapter (MK-Adapter) to adaptively blend the predictions from CLIP and DINO. By such collaboration, CoMo can fully unleash the potential of different pre-training methods and unify them to perform state-of-the-art for few-shot classification. We conduct extensive experiments on 11 datasets to demonstrate the superiority and generalization ability of our approach.
PDF 10 pages, 6 figures
点此查看论文截图
ProtoShotXAI: Using Prototypical Few-Shot Architecture for Explainable AI
Authors:Samuel Hess, Gregory Ditzler
Unexplainable black-box models create scenarios where anomalies cause deleterious responses, thus creating unacceptable risks. These risks have motivated the field of eXplainable Artificial Intelligence (XAI) to improve trust by evaluating local interpretability in black-box neural networks. Unfortunately, the ground truth is unavailable for the model’s decision, so evaluation is limited to qualitative assessment. Further, interpretability may lead to inaccurate conclusions about the model or a false sense of trust. We propose to improve XAI from the vantage point of the user’s trust by exploring a black-box model’s latent feature space. We present an approach, ProtoShotXAI, that uses a Prototypical few-shot network to explore the contrastive manifold between nonlinear features of different classes. A user explores the manifold by perturbing the input features of a query sample and recording the response for a subset of exemplars from any class. Our approach is the first locally interpretable XAI model that can be extended to, and demonstrated on, few-shot networks. We compare ProtoShotXAI to the state-of-the-art XAI approaches on MNIST, Omniglot, and ImageNet to demonstrate, both quantitatively and qualitatively, that ProtoShotXAI provides more flexibility for model exploration. Finally, ProtoShotXAI also demonstrates novel explainabilty and detectabilty on adversarial samples.
PDF 38 pages, 13 figures, 5 tables
点此查看论文截图
Contextual Squeeze-and-Excitation for Efficient Few-Shot Image Classification
Authors:Massimiliano Patacchiola, John Bronskill, Aliaksandra Shysheya, Katja Hofmann, Sebastian Nowozin, Richard E. Turner
Recent years have seen a growth in user-centric applications that require effective knowledge transfer across tasks in the low-data regime. An example is personalization, where a pretrained system is adapted by learning on small amounts of labeled data belonging to a specific user. This setting requires high accuracy under low computational complexity, therefore the Pareto frontier of accuracy vs. adaptation cost plays a crucial role. In this paper we push this Pareto frontier in the few-shot image classification setting with a key contribution: a new adaptive block called Contextual Squeeze-and-Excitation (CaSE) that adjusts a pretrained neural network on a new task to significantly improve performance with a single forward pass of the user data (context). We use meta-trained CaSE blocks to conditionally adapt the body of a network and a fine-tuning routine to adapt a linear head, defining a method called UpperCaSE. UpperCaSE achieves a new state-of-the-art accuracy relative to meta-learners on the 26 datasets of VTAB+MD and on a challenging real-world personalization benchmark (ORBIT), narrowing the gap with leading fine-tuning methods with the benefit of orders of magnitude lower adaptation cost.
PDF Advances in Neural Information Processing Systems (NeurIPS 2022)
点此查看论文截图
Can Large Language Models Truly Understand Prompts? A Case Study with Negated Prompts
Authors:Joel Jang, Seonghyeon Ye, Minjoon Seo
Previous work has shown that there exists a scaling law between the size of Language Models (LMs) and their zero-shot performance on different downstream NLP tasks. In this work, we show that this phenomenon does not hold when evaluating large LMs on tasks with negated prompts, but instead shows an inverse scaling law. We evaluate 9 different tasks with negated prompts on (1) pretrained LMs (OPT & GPT-3) of varying sizes (125M - 175B), (2) LMs further pretrained to generalize to novel prompts (InstructGPT), (3) LMs provided with few-shot examples, and (4) LMs fine-tuned specifically on negated prompts; all LM types perform worse on negated prompts as they scale and show a huge performance gap between the human performance when comparing the average score on both original and negated prompts. By highlighting a critical limitation of existing LMs and methods, we urge the community to develop new approaches of developing LMs that actually follow the given instructions. We provide the code and the datasets to explore negated prompts at https://github.com/joeljang/negated-prompts-for-llms
PDF