对抗攻击


2022-09-27 更新

Residue-Based Natural Language Adversarial Attack Detection

Authors:Vyas Raina, Mark Gales

Deep learning based systems are susceptible to adversarial attacks, where a small, imperceptible change at the input alters the model prediction. However, to date the majority of the approaches to detect these attacks have been designed for image processing systems. Many popular image adversarial detection approaches are able to identify adversarial examples from embedding feature spaces, whilst in the NLP domain existing state of the art detection approaches solely focus on input text features, without consideration of model embedding spaces. This work examines what differences result when porting these image designed strategies to Natural Language Processing (NLP) tasks - these detectors are found to not port over well. This is expected as NLP systems have a very different form of input: discrete and sequential in nature, rather than the continuous and fixed size inputs for images. As an equivalent model-focused NLP detection approach, this work proposes a simple sentence-embedding “residue” based detector to identify adversarial examples. On many tasks, it out-performs ported image domain detectors and recent state of the art NLP specific detectors.
PDF

点此查看论文截图

Approximate better, Attack stronger: Adversarial Example Generation via Asymptotically Gaussian Mixture Distribution

Authors:Zhengwei Fang, Rui Wang, Tao Huang, Liping Jing

Strong adversarial examples are the keys to evaluating and enhancing the robustness of deep neural networks. The popular adversarial attack algorithms maximize the non-concave loss function using the gradient ascent. However, the performance of each attack is usually sensitive to, for instance, minor image transformations due to insufficient information (only one input example, few white-box source models and unknown defense strategies). Hence, the crafted adversarial examples are prone to overfit the source model, which limits their transferability to unidentified architectures. In this paper, we propose Multiple Asymptotically Normal Distribution Attacks (MultiANDA), a novel method that explicitly characterizes adversarial perturbations from a learned distribution. Specifically, we approximate the posterior distribution over the perturbations by taking advantage of the asymptotic normality property of stochastic gradient ascent (SGA), then apply the ensemble strategy on this procedure to estimate a Gaussian mixture model for a better exploration of the potential optimization space. Drawing perturbations from the learned distribution allow us to generate any number of adversarial examples for each input. The approximated posterior essentially describes the stationary distribution of SGA iterations, which captures the geometric information around the local optimum. Thus, the samples drawn from the distribution reliably maintain the transferability. Our proposed method outperforms nine state-of-the-art black-box attacks on deep learning models with or without defenses through extensive experiments on seven normally trained and seven defence models.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录