I2I Translation

2022-09-26 更新

Unpaired Depth Super-Resolution in the Wild

Authors:Aleksandr Safin, Maxim Kan, Nikita Drobyshev, Oleg Voynov, Alexey Artemov, Alexander Filippov, Denis Zorin, Evgeny Burnaev

Depth maps captured with commodity sensors are often of low quality and resolution; these maps need to be enhanced to be used in many applications. State-of-the-art data-driven methods of depth map super-resolution rely on registered pairs of low- and high-resolution depth maps of the same scenes. Acquisition of real-world paired data requires specialized setups. Another alternative, generating low-resolution maps from high-resolution maps by subsampling, adding noise and other artificial degradation methods, does not fully capture the characteristics of real-world low-resolution images. As a consequence, supervised learning methods trained on such artificial paired data may not perform well on real-world low-resolution inputs. We consider an approach to depth super-resolution based on learning from unpaired data. While many techniques for unpaired image-to-image translation have been proposed, most fail to deliver effective hole-filling or reconstruct accurate surfaces using depth maps. We propose an unpaired learning method for depth super-resolution, which is based on a learnable degradation model, enhancement component and surface normal estimates as features to produce more accurate depth maps. We propose a benchmark for unpaired depth SR and demonstrate that our method outperforms existing unpaired methods and performs on par with paired.


MIDMs: Matching Interleaved Diffusion Models for Exemplar-based Image Translation

Authors:Junyoung Seo, Gyuseong Lee, Seokju Cho, Jiyoung Lee, Seungryong Kim

We present a novel method for exemplar-based image translation, called matching interleaved diffusion models (MIDMs). Most existing methods for this task were formulated as GAN-based matching-then-generation framework. However, in this framework, matching errors induced by the difficulty of semantic matching across cross-domain, e.g., sketch and photo, can be easily propagated to the generation step, which in turn leads to degenerated results. Motivated by the recent success of diffusion models overcoming the shortcomings of GANs, we incorporate the diffusion models to overcome these limitations. Specifically, we formulate a diffusion-based matching-and-generation framework that interleaves cross-domain matching and diffusion steps in the latent space by iteratively feeding the intermediate warp into the noising process and denoising it to generate a translated image. In addition, to improve the reliability of the diffusion process, we design a confidence-aware process using cycle-consistency to consider only confident regions during translation. Experimental results show that our MIDMs generate more plausible images than state-of-the-art methods.


文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !