Domain Adaptation


2022-09-26 更新

Lightweight Transformers for Human Activity Recognition on Mobile Devices

Authors:Sannara EK, François Portet, Philippe Lalanda

Human Activity Recognition (HAR) on mobile devices has shown to be achievable with lightweight neural models learned from data generated by the user’s inertial measurement units (IMUs). Most approaches for instanced-based HAR have used Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTMs), or a combination of the two to achieve state-of-the-art results with real-time performances. Recently, the Transformers architecture in the language processing domain and then in the vision domain has pushed further the state-of-the-art over classical architectures. However, such Transformers architecture is heavyweight in computing resources, which is not well suited for embedded applications of HAR that can be found in the pervasive computing domain. In this study, we present Human Activity Recognition Transformer (HART), a lightweight, sensor-wise transformer architecture that has been specifically adapted to the domain of the IMUs embedded on mobile devices. Our experiments on HAR tasks with several publicly available datasets show that HART uses fewer FLoating-point Operations Per Second (FLOPS) and parameters while outperforming current state-of-the-art results. Furthermore, we present evaluations across various architectures on their performances in heterogeneous environments and show that our models can better generalize on different sensing devices or on-body positions.
PDF

点此查看论文截图

Robust Domain Adaptation for Machine Reading Comprehension

Authors:Liang Jiang, Zhenyu Huang, Jia Liu, Zujie Wen, Xi Peng

Most domain adaptation methods for machine reading comprehension (MRC) use a pre-trained question-answer (QA) construction model to generate pseudo QA pairs for MRC transfer. Such a process will inevitably introduce mismatched pairs (i.e., noisy correspondence) due to i) the unavailable QA pairs in target documents, and ii) the domain shift during applying the QA construction model to the target domain. Undoubtedly, the noisy correspondence will degenerate the performance of MRC, which however is neglected by existing works. To solve such an untouched problem, we propose to construct QA pairs by additionally using the dialogue related to the documents, as well as a new domain adaptation method for MRC. Specifically, we propose Robust Domain Adaptation for Machine Reading Comprehension (RMRC) method which consists of an answer extractor (AE), a question selector (QS), and an MRC model. Specifically, RMRC filters out the irrelevant answers by estimating the correlation to the document via the AE, and extracts the questions by fusing the candidate questions in multiple rounds of dialogue chats via the QS. With the extracted QA pairs, MRC is fine-tuned and provides the feedback to optimize the QS through a novel reinforced self-training method. Thanks to the optimization of the QS, our method will greatly alleviate the noisy correspondence problem caused by the domain shift. To the best of our knowledge, this could be the first study to reveal the influence of noisy correspondence in domain adaptation MRC models and show a feasible way to achieve robustness to mismatched pairs. Extensive experiments on three datasets demonstrate the effectiveness of our method.
PDF

点此查看论文截图

Conversational QA Dataset Generation with Answer Revision

Authors:Seonjeong Hwang, Gary Geunbae Lee

Conversational question—answer generation is a task that automatically generates a large-scale conversational question answering dataset based on input passages. In this paper, we introduce a novel framework that extracts question-worthy phrases from a passage and then generates corresponding questions considering previous conversations. In particular, our framework revises the extracted answers after generating questions so that answers exactly match paired questions. Experimental results show that our simple answer revision approach leads to significant improvement in the quality of synthetic data. Moreover, we prove that our framework can be effectively utilized for domain adaptation of conversational question answering.
PDF COLING 2022

点此查看论文截图

A domain adaptive deep learning solution for scanpath prediction of paintings

Authors:Mohamed Amine Kerkouri, Marouane Tliba, Aladine Chetouani, Alessandro Bruno

Cultural heritage understanding and preservation is an important issue for society as it represents a fundamental aspect of its identity. Paintings represent a significant part of cultural heritage, and are the subject of study continuously. However, the way viewers perceive paintings is strictly related to the so-called HVS (Human Vision System) behaviour. This paper focuses on the eye-movement analysis of viewers during the visual experience of a certain number of paintings. In further details, we introduce a new approach to predicting human visual attention, which impacts several cognitive functions for humans, including the fundamental understanding of a scene, and then extend it to painting images. The proposed new architecture ingests images and returns scanpaths, a sequence of points featuring a high likelihood of catching viewers’ attention. We use an FCNN (Fully Convolutional Neural Network), in which we exploit a differentiable channel-wise selection and Soft-Argmax modules. We also incorporate learnable Gaussian distributions onto the network bottleneck to simulate visual attention process bias in natural scene images. Furthermore, to reduce the effect of shifts between different domains (i.e. natural images, painting), we urge the model to learn unsupervised general features from other domains using a gradient reversal classifier. The results obtained by our model outperform existing state-of-the-art ones in terms of accuracy and efficiency.
PDF Accepted at CBMI2022 graz, austria

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录