2022-09-24 更新
Can There be Art Without an Artist?
Authors:Avijit Ghosh, Genoveva Fossas
Generative Adversarial Network (GAN) based art has proliferated in the past year, going from a shiny new tool to generate fake human faces to a stage where anyone can generate thousands of artistic images with minimal effort. Some of these images are now ``good’’ enough to win accolades from qualified judges. In this paper, we explore how Generative Models have impacted artistry, not only from a qualitative point of view, but also from an angle of exploitation of artisans —both via plagiarism, where models are trained on their artwork without permission, and via profit shifting, where profits in the art market have shifted from art creators to model owners or to traders in the unregulated secondary crypto market. This confluence of factors risks completely detaching humans from the artistic process, devaluing the labor of artists and distorting the public perception of the value of art.
PDF
点此查看论文截图
Improving GANs with A Dynamic Discriminator
Authors:Ceyuan Yang, Yujun Shen, Yinghao Xu, Deli Zhao, Bo Dai, Bolei Zhou
Discriminator plays a vital role in training generative adversarial networks (GANs) via distinguishing real and synthesized samples. While the real data distribution remains the same, the synthesis distribution keeps varying because of the evolving generator, and thus effects a corresponding change to the bi-classification task for the discriminator. We argue that a discriminator with an on-the-fly adjustment on its capacity can better accommodate such a time-varying task. A comprehensive empirical study confirms that the proposed training strategy, termed as DynamicD, improves the synthesis performance without incurring any additional computation cost or training objectives. Two capacity adjusting schemes are developed for training GANs under different data regimes: i) given a sufficient amount of training data, the discriminator benefits from a progressively increased learning capacity, and ii) when the training data is limited, gradually decreasing the layer width mitigates the over-fitting issue of the discriminator. Experiments on both 2D and 3D-aware image synthesis tasks conducted on a range of datasets substantiate the generalizability of our DynamicD as well as its substantial improvement over the baselines. Furthermore, DynamicD is synergistic to other discriminator-improving approaches (including data augmentation, regularizers, and pre-training), and brings continuous performance gain when combined for learning GANs.
PDF To appear in NeurIPS 2022
点此查看论文截图
Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a Polynomial Net Study
Authors:Yongtao Wu, Zhenyu Zhu, Fanghui Liu, Grigorios G Chrysos, Volkan Cevher
Neural tangent kernel (NTK) is a powerful tool to analyze training dynamics of neural networks and their generalization bounds. The study on NTK has been devoted to typical neural network architectures, but is incomplete for neural networks with Hadamard products (NNs-Hp), e.g., StyleGAN and polynomial neural networks. In this work, we derive the finite-width NTK formulation for a special class of NNs-Hp, i.e., polynomial neural networks. We prove their equivalence to the kernel regression predictor with the associated NTK, which expands the application scope of NTK. Based on our results, we elucidate the separation of PNNs over standard neural networks with respect to extrapolation and spectral bias. Our two key insights are that when compared to standard neural networks, PNNs are able to fit more complicated functions in the extrapolation regime and admit a slower eigenvalue decay of the respective NTK. Besides, our theoretical results can be extended to other types of NNs-Hp, which expand the scope of our work. Our empirical results validate the separations in broader classes of NNs-Hp, which provide a good justification for a deeper understanding of neural architectures.
PDF Accepted in NeurIPS 2022
点此查看论文截图
VToonify: Controllable High-Resolution Portrait Video Style Transfer
Authors:Shuai Yang, Liming Jiang, Ziwei Liu, Chen Change Loy
Generating high-quality artistic portrait videos is an important and desirable task in computer graphics and vision. Although a series of successful portrait image toonification models built upon the powerful StyleGAN have been proposed, these image-oriented methods have obvious limitations when applied to videos, such as the fixed frame size, the requirement of face alignment, missing non-facial details and temporal inconsistency. In this work, we investigate the challenging controllable high-resolution portrait video style transfer by introducing a novel VToonify framework. Specifically, VToonify leverages the mid- and high-resolution layers of StyleGAN to render high-quality artistic portraits based on the multi-scale content features extracted by an encoder to better preserve the frame details. The resulting fully convolutional architecture accepts non-aligned faces in videos of variable size as input, contributing to complete face regions with natural motions in the output. Our framework is compatible with existing StyleGAN-based image toonification models to extend them to video toonification, and inherits appealing features of these models for flexible style control on color and intensity. This work presents two instantiations of VToonify built upon Toonify and DualStyleGAN for collection-based and exemplar-based portrait video style transfer, respectively. Extensive experimental results demonstrate the effectiveness of our proposed VToonify framework over existing methods in generating high-quality and temporally-coherent artistic portrait videos with flexible style controls.
PDF ACM Transactions on Graphics (SIGGRAPH Asia 2022). Code: https://github.com/williamyang1991/VToonify Project page: https://www.mmlab-ntu.com/project/vtoonify/