2022-09-23 更新
CoSformer: Detecting Co-Salient Object with Transformers
Authors:Lv Tang, Bo Li
Co-Salient Object Detection (CoSOD) aims at simulating the human visual system to discover the common and salient objects from a group of relevant images. Recent methods typically develop sophisticated deep learning based models have greatly improved the performance of CoSOD task. But there are still two major drawbacks that need to be further addressed, 1) sub-optimal inter-image relationship modeling; 2) lacking consideration of inter-image separability. In this paper, we propose the Co-Salient Object Detection Transformer (CoSformer) network to capture both salient and common visual patterns from multiple images. By leveraging Transformer architecture, the proposed method address the influence of the input orders and greatly improve the stability of the CoSOD task. We also introduce a novel concept of inter-image separability. We construct a contrast learning scheme to modeling the inter-image separability and learn more discriminative embedding space to distinguish true common objects from noisy objects. Extensive experiments on three challenging benchmarks, i.e., CoCA, CoSOD3k, and Cosal2015, demonstrate that our CoSformer outperforms cutting-edge models and achieves the new state-of-the-art. We hope that CoSformer can motivate future research for more visual co-analysis tasks.
PDF
点此查看论文截图
Safety Metrics and Losses for Object Detection in Autonomous Driving
Authors:Hsuan-Cheng Liao, Chih-Hong Cheng, Hasan Esen, Alois Knoll
State-of-the-art object detectors have been shown effective in many applications. Usually, their performance is evaluated based on accuracy metrics such as mean Average Precision. In this paper, we consider a safety property of 3D object detectors in the context of Autonomous Driving (AD). In particular, we propose an essential safety requirement for object detectors in AD and formulate it into a specification. During the formulation, we find that abstracting 3D objects with projected 2D bounding boxes on the image and bird’s-eye-view planes allows for a necessary and sufficient condition to the proposed safety requirement. We then leverage the analysis and derive qualitative and quantitative safety metrics based on the Intersection-over-Ground-Truth measure and a distance ratio between predictions and ground truths. Finally, for continual improvement, we formulate safety losses that can be used to optimize object detectors towards higher safety scores. Our experiments with public models on the MMDetection3D library and the nuScenes datasets demonstrate the validity of our consideration and proposals.
PDF Submitted to ICRA 2023
点此查看论文截图
DocSegTr: An Instance-Level End-to-End Document Image Segmentation Transformer
Authors:Sanket Biswas, Ayan Banerjee, Josep Lladós, Umapada Pal
Understanding documents with rich layouts is an essential step towards information extraction. Business intelligence processes often require the extraction of useful semantic content from documents at a large scale for subsequent decision-making tasks. In this context, instance-level segmentation of different document objects (title, sections, figures etc.) has emerged as an interesting problem for the document analysis and understanding community. To advance the research in this direction, we present a transformer-based model called \emph{DocSegTr} for end-to-end instance segmentation of complex layouts in document images. The method adapts a twin attention module, for semantic reasoning, which helps to become highly computationally efficient compared with the state-of-the-art. To the best of our knowledge, this is the first work on transformer-based document segmentation. Extensive experimentation on competitive benchmarks like PubLayNet, PRIMA, Historical Japanese (HJ) and TableBank demonstrate that our model achieved comparable or better segmentation performance than the existing state-of-the-art approaches with the average precision of 89.4, 40.3, 83.4 and 93.3. This simple and flexible framework could serve as a promising baseline for instance-level recognition tasks in document images.
PDF Preprint
点此查看论文截图
Rethinking Unsupervised Domain Adaptation for Semantic Segmentation
Authors:Zhijie Wang, Masanori Suganuma, Takayuki Okatani
Unsupervised domain adaptation (UDA) adapts a model trained on one domain (called source) to a novel domain (called target) using only unlabeled data. Due to its high annotation cost, researchers have developed many UDA methods for semantic segmentation, which assume no labeled sample is available in the target domain. We question the practicality of this assumption for two reasons. First, after training a model with a UDA method, we must somehow verify the model before deployment. Second, UDA methods have at least a few hyper-parameters that need to be determined. The surest solution to these is to evaluate the model using validation data, i.e., a certain amount of labeled target-domain samples. This question about the basic assumption of UDA leads us to rethink UDA from a data-centric point of view. Specifically, we assume we have access to a minimum level of labeled data. Then, we ask how much is necessary to find good hyper-parameters of existing UDA methods. We then consider what if we use the same data for supervised training of the same model, e.g., finetuning. We conducted experiments to answer these questions with popular scenarios, {GTA5, SYNTHIA}$\rightarrow$Cityscapes. We found that i) choosing good hyper-parameters needs only a few labeled images for some UDA methods whereas a lot more for others; and ii) simple finetuning works surprisingly well; it outperforms many UDA methods if only several dozens of labeled images are available.
PDF
点此查看论文截图
AcroFOD: An Adaptive Method for Cross-domain Few-shot Object Detection
Authors:Yipeng Gao, Lingxiao Yang, Yunmu Huang, Song Xie, Shiyong Li, Wei-shi Zheng
Under the domain shift, cross-domain few-shot object detection aims to adapt object detectors in the target domain with a few annotated target data. There exists two significant challenges: (1) Highly insufficient target domain data; (2) Potential over-adaptation and misleading caused by inappropriately amplified target samples without any restriction. To address these challenges, we propose an adaptive method consisting of two parts. First, we propose an adaptive optimization strategy to select augmented data similar to target samples rather than blindly increasing the amount. Specifically, we filter the augmented candidates which significantly deviate from the target feature distribution in the very beginning. Second, to further relieve the data limitation, we propose the multi-level domain-aware data augmentation to increase the diversity and rationality of augmented data, which exploits the cross-image foreground-background mixture. Experiments show that the proposed method achieves state-of-the-art performance on multiple benchmarks.
PDF Accepted in ECCV 2022
点此查看论文截图
Detecting Rotated Objects as Gaussian Distributions and Its 3-D Generalization
Authors:Xue Yang, Gefan Zhang, Xiaojiang Yang, Yue Zhou, Wentao Wang, Jin Tang, Tao He, Junchi Yan
Existing detection methods commonly use a parameterized bounding box (BBox) to model and detect (horizontal) objects and an additional rotation angle parameter is used for rotated objects. We argue that such a mechanism has fundamental limitations in building an effective regression loss for rotation detection, especially for high-precision detection with high IoU (e.g. 0.75). Instead, we propose to model the rotated objects as Gaussian distributions. A direct advantage is that our new regression loss regarding the distance between two Gaussians e.g. Kullback-Leibler Divergence (KLD), can well align the actual detection performance metric, which is not well addressed in existing methods. Moreover, the two bottlenecks i.e. boundary discontinuity and square-like problem also disappear. We also propose an efficient Gaussian metric-based label assignment strategy to further boost the performance. Interestingly, by analyzing the BBox parameters’ gradients under our Gaussian-based KLD loss, we show that these parameters are dynamically updated with interpretable physical meaning, which help explain the effectiveness of our approach, especially for high-precision detection. We extend our approach from 2-D to 3-D with a tailored algorithm design to handle the heading estimation, and experimental results on twelve public datasets (2-D/3-D, aerial/text/face images) with various base detectors show its superiority.
PDF 19 pages, 11 figures, 16 tables, accepted by TPAMI 2022. Journal extension for GWD (ICML’21) and KLD (NeurIPS’21). arXiv admin note: text overlap with arXiv:2101.11952
点此查看论文截图
FusionRCNN: LiDAR-Camera Fusion for Two-stage 3D Object Detection
Authors:Xinli Xu, Shaocong Dong, Lihe Ding, Jie Wang, Tingfa Xu, Jianan Li
3D object detection with multi-sensors is essential for an accurate and reliable perception system of autonomous driving and robotics. Existing 3D detectors significantly improve the accuracy by adopting a two-stage paradigm which merely relies on LiDAR point clouds for 3D proposal refinement. Though impressive, the sparsity of point clouds, especially for the points far away, making it difficult for the LiDAR-only refinement module to accurately recognize and locate objects.To address this problem, we propose a novel multi-modality two-stage approach named FusionRCNN, which effectively and efficiently fuses point clouds and camera images in the Regions of Interest(RoI). FusionRCNN adaptively integrates both sparse geometry information from LiDAR and dense texture information from camera in a unified attention mechanism. Specifically, it first utilizes RoIPooling to obtain an image set with a unified size and gets the point set by sampling raw points within proposals in the RoI extraction step; then leverages an intra-modality self-attention to enhance the domain-specific features, following by a well-designed cross-attention to fuse the information from two modalities.FusionRCNN is fundamentally plug-and-play and supports different one-stage methods with almost no architectural changes. Extensive experiments on KITTI and Waymo benchmarks demonstrate that our method significantly boosts the performances of popular detectors.Remarkably, FusionRCNN significantly improves the strong SECOND baseline by 6.14% mAP on Waymo, and outperforms competing two-stage approaches. Code will be released soon at https://github.com/xxlbigbrother/Fusion-RCNN.
PDF 7 pages, 3 figures
点此查看论文截图
Position-Aware Relation Learning for RGB-Thermal Salient Object Detection
Authors:Heng Zhou, Chunna Tian, Zhenxi Zhang, Chengyang Li, Yuxuan Ding, Yongqiang Xie, Zhongbo Li
RGB-Thermal salient object detection (SOD) combines two spectra to segment visually conspicuous regions in images. Most existing methods use boundary maps to learn the sharp boundary. These methods ignore the interactions between isolated boundary pixels and other confident pixels, leading to sub-optimal performance. To address this problem,we propose a position-aware relation learning network (PRLNet) for RGB-T SOD based on swin transformer. PRLNet explores the distance and direction relationships between pixels to strengthen intra-class compactness and inter-class separation, generating salient object masks with clear boundaries and homogeneous regions. Specifically, we develop a novel signed distance map auxiliary module (SDMAM) to improve encoder feature representation, which takes into account the distance relation of different pixels in boundary neighborhoods. Then, we design a feature refinement approach with directional field (FRDF), which rectifies features of boundary neighborhood by exploiting the features inside salient objects. FRDF utilizes the directional information between object pixels to effectively enhance the intra-class compactness of salient regions. In addition, we constitute a pure transformer encoder-decoder network to enhance multispectral feature representation for RGB-T SOD. Finally, we conduct quantitative and qualitative experiments on three public benchmark datasets.The results demonstrate that our proposed method outperforms the state-of-the-art methods.
PDF