2022-09-16 更新
Hydra Attention: Efficient Attention with Many Heads
Authors:Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Judy Hoffman
While transformers have begun to dominate many tasks in vision, applying them to large images is still computationally difficult. A large reason for this is that self-attention scales quadratically with the number of tokens, which in turn, scales quadratically with the image size. On larger images (e.g., 1080p), over 60% of the total computation in the network is spent solely on creating and applying attention matrices. We take a step toward solving this issue by introducing Hydra Attention, an extremely efficient attention operation for Vision Transformers (ViTs). Paradoxically, this efficiency comes from taking multi-head attention to its extreme: by using as many attention heads as there are features, Hydra Attention is computationally linear in both tokens and features with no hidden constants, making it significantly faster than standard self-attention in an off-the-shelf ViT-B/16 by a factor of the token count. Moreover, Hydra Attention retains high accuracy on ImageNet and, in some cases, actually improves it.
PDF Accepted CADL 2022 (ECCV Workshop)
点此查看论文截图
One-Shot Transfer of Affordance Regions? AffCorrs!
Authors:Denis Hadjivelichkov, Sicelukwanda Zwane, Marc Deisenroth, Lourdes Agapito, Dimitrios Kanoulas
In this work, we tackle one-shot visual search of object parts. Given a single reference image of an object with annotated affordance regions, we segment semantically corresponding parts within a target scene. We propose AffCorrs, an unsupervised model that combines the properties of pre-trained DINO-ViT’s image descriptors and cyclic correspondences. We use AffCorrs to find corresponding affordances both for intra- and inter-class one-shot part segmentation. This task is more difficult than supervised alternatives, but enables future work such as learning affordances via imitation and assisted teleoperation.
PDF Published in Conference on Robot Learning, 2022 For code and dataset, refer to https://sites.google.com/view/affcorrs
点此查看论文截图
2022-09-16 更新
Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal
Authors:Yucheng Shi, Yahong Han, Yu-an Tan, Xiaohui Kuang
Vision transformers (ViTs) have demonstrated impressive performance and stronger adversarial robustness compared to Convolutional Neural Networks (CNNs). On the one hand, ViTs’ focus on global interaction between individual patches reduces the local noise sensitivity of images. On the other hand, the neglect of noise sensitivity differences between image regions by existing decision-based attacks further compromises the efficiency of noise compression, especially for ViTs. Therefore, validating the black-box adversarial robustness of ViTs when the target model can only be queried still remains a challenging problem. In this paper, we theoretically analyze the limitations of existing decision-based attacks from the perspective of noise sensitivity difference between regions of the image, and propose a new decision-based black-box attack against ViTs, termed Patch-wise Adversarial Removal (PAR). PAR divides images into patches through a coarse-to-fine search process and compresses the noise on each patch separately. PAR records the noise magnitude and noise sensitivity of each patch and selects the patch with the highest query value for noise compression. In addition, PAR can be used as a noise initialization method for other decision-based attacks to improve the noise compression efficiency on both ViTs and CNNs without introducing additional calculations. Extensive experiments on three datasets demonstrate that PAR achieves a much lower noise magnitude with the same number of queries.
PDF
点此查看论文截图
Can We Solve 3D Vision Tasks Starting from A 2D Vision Transformer?
Authors:Yi Wang, Zhiwen Fan, Tianlong Chen, Hehe Fan, Zhangyang Wang
Vision Transformers (ViTs) have proven to be effective, in solving 2D image understanding tasks by training over large-scale image datasets; and meanwhile as a somehow separate track, in modeling the 3D visual world too such as voxels or point clouds. However, with the growing hope that transformers can become the “universal” modeling tool for heterogeneous data, ViTs for 2D and 3D tasks have so far adopted vastly different architecture designs that are hardly transferable. That invites an (over-)ambitious question: can we close the gap between the 2D and 3D ViT architectures? As a piloting study, this paper demonstrates the appealing promise to understand the 3D visual world, using a standard 2D ViT architecture, with only minimal customization at the input and output levels without redesigning the pipeline. To build a 3D ViT from its 2D sibling, we “inflate” the patch embedding and token sequence, accompanied with new positional encoding mechanisms designed to match the 3D data geometry. The resultant “minimalist” 3D ViT, named Simple3D-Former, performs surprisingly robustly on popular 3D tasks such as object classification, point cloud segmentation and indoor scene detection, compared to highly customized 3D-specific designs. It can hence act as a strong baseline for new 3D ViTs. Moreover, we note that pursing a unified 2D-3D ViT design has practical relevance besides just scientific curiosity. Specifically, we demonstrate that Simple3D-Former naturally enables to exploit the wealth of pre-trained weights from large-scale realistic 2D images (e.g., ImageNet), which can be plugged in to enhancing the 3D task performance “for free”.
PDF
点此查看论文截图
Test-Time Prompt Tuning for Zero-Shot Generalization in Vision-Language Models
Authors:Manli Shu, Weili Nie, De-An Huang, Zhiding Yu, Tom Goldstein, Anima Anandkumar, Chaowei Xiao
Pre-trained vision-language models (e.g., CLIP) have shown promising zero-shot generalization in many downstream tasks with properly designed text prompts. Instead of relying on hand-engineered prompts, recent works learn prompts using the training data from downstream tasks. While effective, training on domain-specific data reduces a model’s generalization capability to unseen new domains. In this work, we propose test-time prompt tuning (TPT), a method that can learn adaptive prompts on the fly with a single test sample. For image classification, TPT optimizes the prompt by minimizing the entropy with confidence selection so that the model has consistent predictions across different augmented views of each test sample. In evaluating generalization to natural distribution shifts, TPT improves the zero-shot top-1 accuracy of CLIP by 3.6% on average, surpassing previous prompt tuning approaches that require additional task-specific training data. In evaluating cross-dataset generalization with unseen categories, TPT performs on par with the state-of-the-art approaches that use additional training data. Project page: https://azshue.github.io/TPT.
PDF NeurIPS 2022