2022-09-16 更新
Face Shape-Guided Deep Feature Alignment for Face Recognition Robust to Face Misalignment
Authors:Hyung-Il Kim, Kimin Yun, Yong Man Ro
For the past decades, face recognition (FR) has been actively studied in computer vision and pattern recognition society. Recently, due to the advances in deep learning, the FR technology shows high performance for most of the benchmark datasets. However, when the FR algorithm is applied to a real-world scenario, the performance has been known to be still unsatisfactory. This is mainly attributed to the mismatch between training and testing sets. Among such mismatches, face misalignment between training and testing faces is one of the factors that hinder successful FR. To address this limitation, we propose a face shape-guided deep feature alignment framework for FR robust to the face misalignment. Based on a face shape prior (e.g., face keypoints), we train the proposed deep network by introducing alignment processes, i.e., pixel and feature alignments, between well-aligned and misaligned face images. Through the pixel alignment process that decodes the aggregated feature extracted from a face image and face shape prior, we add the auxiliary task to reconstruct the well-aligned face image. Since the aggregated features are linked to the face feature extraction network as a guide via the feature alignment process, we train the robust face feature to the face misalignment. Even if the face shape estimation is required in the training stage, the additional face alignment process, which is usually incorporated in the conventional FR pipeline, is not necessarily needed in the testing phase. Through the comparative experiments, we validate the effectiveness of the proposed method for the face misalignment with the FR datasets.
PDF 14 pages, 9 figures
点此查看论文截图
2022-09-16 更新
Pose Attention-Guided Profile-to-Frontal Face Recognition
Authors:Moktari Mostofa, Mohammad Saeed Ebrahimi Saadabadi, Sahar Rahimi Malakshan, Nasser M. Nasrabadi
In recent years, face recognition systems have achieved exceptional success due to promising advances in deep learning architectures. However, they still fail to achieve expected accuracy when matching profile images against a gallery of frontal images. Current approaches either perform pose normalization (i.e., frontalization) or disentangle pose information for face recognition. We instead propose a new approach to utilize pose as an auxiliary information via an attention mechanism. In this paper, we hypothesize that pose attended information using an attention mechanism can guide contextual and distinctive feature extraction from profile faces, which further benefits a better representation learning in an embedded domain. To achieve this, first, we design a unified coupled profile-to-frontal face recognition network. It learns the mapping from faces to a compact embedding subspace via a class-specific contrastive loss. Second, we develop a novel pose attention block (PAB) to specially guide the pose-agnostic feature extraction from profile faces. To be more specific, PAB is designed to explicitly help the network to focus on important features along both channel and spatial dimension while learning discriminative yet pose invariant features in an embedding subspace. To validate the effectiveness of our proposed method, we conduct experiments on both controlled and in the wild benchmarks including Multi-PIE, CFP, IJBC, and show superiority over the state of the arts.
PDF 10 pages, 5 figures, Accepted at IJCB, 2022