2022-09-15 更新
Virtual Underwater Datasets for Autonomous Inspections
Authors:Ioannis Polymenis, Maryam Haroutunian, Rose Norman, David Trodden
Underwater Vehicles have become more sophisticated, driven by the off-shore sector and the scientific community’s rapid advancements in underwater operations. Notably, many underwater tasks, including the assessment of subsea infrastructure, are performed with the assistance of Autonomous Underwater Vehicles (AUVs). There have been recent breakthroughs in Artificial Intelligence (AI) and, notably, Deep Learning (DL) models and applications, which have widespread usage in a variety of fields, including aerial unmanned vehicles, autonomous car navigation, and other applications. However, they are not as prevalent in underwater applications due to the difficulty of obtaining underwater datasets for a specific application. In this sense, the current study utilises recent advancements in the area of DL to construct a bespoke dataset generated from photographs of items captured in a laboratory environment. Generative Adversarial Networks (GANs) were utilised to translate the laboratory object dataset into the underwater domain by combining the collected images with photographs containing the underwater environment. The findings demonstrated the feasibility of creating such a dataset, since the resulting images closely resembled the real underwater environment when compared with real-world underwater ship hull images. Therefore, the artificial datasets of the underwater environment can overcome the difficulties arising from the limited access to real-world underwater images and are used to enhance underwater operations through underwater object image classification and detection.
PDF 20 pages, 10 figures
点此查看论文截图
Dual-Scale Single Image Dehazing Via Neural Augmentation
Authors:Zhengguo Li, Chaobing Zheng, Haiyan Shu, Shiqian Wu
Model-based single image dehazing algorithms restore haze-free images with sharp edges and rich details for real-world hazy images at the expense of low PSNR and SSIM values for synthetic hazy images. Data-driven ones restore haze-free images with high PSNR and SSIM values for synthetic hazy images but with low contrast, and even some remaining haze for real world hazy images. In this paper, a novel single image dehazing algorithm is introduced by combining model-based and data-driven approaches. Both transmission map and atmospheric light are first estimated by the model-based methods, and then refined by dual-scale generative adversarial networks (GANs) based approaches. The resultant algorithm forms a neural augmentation which converges very fast while the corresponding data-driven approach might not converge. Haze-free images are restored by using the estimated transmission map and atmospheric light as well as the Koschmiederlaw. Experimental results indicate that the proposed algorithm can remove haze well from real-world and synthetic hazy images.
PDF Single image dehazing, dual-scale, neural augmentation, haze line averaging, generative adversarial network. arXiv admin note: substantial text overlap with arXiv:2111.10943