2022-09-14 更新
An Improved Lightweight YOLOv5 Model Based on Attention Mechanism for Face Mask Detection
Authors:Sheng Xu, Zhanyu Guo, Yuchi Liu, Jingwei Fan, Xuxu Liu
Coronavirus 2019 has brought severe challenges to social stability and public health worldwide. One effective way of curbing the epidemic is to require people to wear masks in public places and monitor mask-wearing states by utilizing suitable automatic detectors. However, existing deep learning based models struggle to simultaneously achieve the requirements of both high precision and real-time performance. To solve this problem, we propose an improved lightweight face mask detector based on YOLOv5, which can achieve an excellent balance of precision and speed. Firstly, a novel backbone ShuffleCANet that combines ShuffleNetV2 network with Coordinate Attention mechanism is proposed as the backbone. Afterwards, an efficient path aggression network BiFPN is applied as the feature fusion neck. Furthermore, the localization loss is replaced with alpha-CIoU in model training phase to obtain higher-quality anchors. Some valuable strategies such as data augmentation, adaptive image scaling, and anchor cluster operation are also utilized. Experimental results on AIZOO face mask dataset show the superiority of the proposed model. Compared with the original YOLOv5, the proposed model increases the inference speed by 28.3% while still improving the precision by 0.58%. It achieves the best mean average precision of 95.2% compared with other seven existing models, which is 4.4% higher than the baseline.
PDF Accepted as a conference paper at the 31st International Conference on Artificial Neural Networks (ICANN 2022). The final authenticated publication will be available in the Springer Lecture Notes in Computer Science (LNCS)
点此查看论文截图
Just Noticeable Difference Modeling for Face Recognition System
Authors:Yu Tian, Zhangkai Ni, Baoliang Chen, Shurun Wang, Shiqi Wang, Hanli Wang, Sam Kwong
High-quality face images are required to guarantee the stability and reliability of automatic face recognition (FR) systems in surveillance and security scenarios. However, a massive amount of face data is usually compressed before being analyzed due to limitations on transmission or storage. The compressed images may lose the powerful identity information, resulting in the performance degradation of the FR system. Herein, we make the first attempt to study just noticeable difference (JND) for the FR system, which can be defined as the maximum distortion that the FR system cannot notice. More specifically, we establish a JND dataset including 3530 original images and 137,670 compressed images generated by advanced reference encoding/decoding software based on the Versatile Video Coding (VVC) standard (VTM-15.0). Subsequently, we develop a novel JND prediction model to directly infer JND images for the FR system. In particular, in order to maximum redundancy removal without impairment of robust identity information, we apply the encoder with multiple feature extraction and attention-based feature decomposition modules to progressively decompose face features into two uncorrelated components, i.e., identity and residual features, via self-supervised learning. Then, the residual feature is fed into the decoder to generate the residual map. Finally, the predicted JND map is obtained by subtracting the residual map from the original image. Experimental results have demonstrated that the proposed model achieves higher accuracy of JND map prediction compared with the state-of-the-art JND models, and is capable of saving more bits while maintaining the performance of the FR system compared with VTM-15.0.
PDF
点此查看论文截图
Vec2Face-v2: Unveil Human Faces from their Blackbox Features via Attention-based Network in Face Recognition
Authors:Thanh-Dat Truong, Chi Nhan Duong, Ngan Le, Marios Savvides, Khoa Luu
In this work, we investigate the problem of face reconstruction given a facial feature representation extracted from a blackbox face recognition engine. Indeed, it is very challenging problem in practice due to the limitations of abstracted information from the engine. We therefore introduce a new method named Attention-based Bijective Generative Adversarial Networks in a Distillation framework (DAB-GAN) to synthesize faces of a subject given his/her extracted face recognition features. Given any unconstrained unseen facial features of a subject, the DAB-GAN can reconstruct his/her faces in high definition. The DAB-GAN method includes a novel attention-based generative structure with the new defined Bijective Metrics Learning approach. The framework starts by introducing a bijective metric so that the distance measurement and metric learning process can be directly adopted in image domain for an image reconstruction task. The information from the blackbox face recognition engine will be optimally exploited using the global distillation process. Then an attention-based generator is presented for a highly robust generator to synthesize realistic faces with ID preservation. We have evaluated our method on the challenging face recognition databases, i.e. CelebA, LFW, AgeDB, CFP-FP, and consistently achieved the state-of-the-art results. The advancement of DAB-GAN is also proven on both image realism and ID preservation properties.
PDF arXiv admin note: substantial text overlap with arXiv:2003.06958