无监督/半监督/对比学习


2022-09-12 更新

Class-Aware Contrastive Semi-Supervised Learning

Authors:Fan Yang, Kai Wu, Shuyi Zhang, Guannan Jiang, Yong Liu, Feng Zheng, Wei Zhang, Chengjie Wang, Long Zeng

Pseudo-label-based semi-supervised learning (SSL) has achieved great success on raw data utilization. However, its training procedure suffers from confirmation bias due to the noise contained in self-generated artificial labels. Moreover, the model’s judgment becomes noisier in real-world applications with extensive out-of-distribution data. To address this issue, we propose a general method named Class-aware Contrastive Semi-Supervised Learning (CCSSL), which is a drop-in helper to improve the pseudo-label quality and enhance the model’s robustness in the real-world setting. Rather than treating real-world data as a union set, our method separately handles reliable in-distribution data with class-wise clustering for blending into downstream tasks and noisy out-of-distribution data with image-wise contrastive for better generalization. Furthermore, by applying target re-weighting, we successfully emphasize clean label learning and simultaneously reduce noisy label learning. Despite its simplicity, our proposed CCSSL has significant performance improvements over the state-of-the-art SSL methods on the standard datasets CIFAR100 and STL10. On the real-world dataset Semi-iNat 2021, we improve FixMatch by 9.80% and CoMatch by 3.18%. Code is available https://github.com/TencentYoutuResearch/Classification-SemiCLS.
PDF cvpr2022 accepted, half more page for adding rebuttal Infos

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录