检测/分割/跟踪


2022-09-11 更新

Task-wise Sampling Convolutions for Arbitrary-Oriented Object Detection in Aerial Images

Authors:Zhanchao Huang, Wei Li, Xiang-Gen Xia, Hao Wang, Ran Tao

Arbitrary-oriented object detection (AOOD) has been widely applied to locate and classify objects with diverse orientations in remote sensing images. However, the inconsistent features for the localization and classification tasks in AOOD models may lead to ambiguity and low-quality object predictions, which constrains the detection performance. In this paper, an AOOD method called task-wise sampling convolutions (TS-Conv) is proposed. TS-Conv adaptively samples task-wise features from respective sensitive regions and maps these features together in alignment to guide a dynamic label assignment for better predictions. Specifically, sampling positions of the localization convolution in TS-Conv is supervised by the oriented bounding box (OBB) prediction associated with spatial coordinates. While sampling positions and convolutional kernel of the classification convolution are designed to be adaptively adjusted according to different orientations for improving the orientation robustness of features. Furthermore, a dynamic task-aware label assignment (DTLA) strategy is developed to select optimal candidate positions and assign labels dynamicly according to ranked task-aware scores obtained from TS-Conv. Extensive experiments on several public datasets covering multiple scenes, multimodal images, and multiple categories of objects demonstrate the effectiveness, scalability and superior performance of the proposed TS-Conv.
PDF 16 pages, 14 figures, 13 tables

点此查看论文截图

Multi-Grained Angle Representation for Remote Sensing Object Detection

Authors:Hao Wang, Zhanchao Huang, Zhengchao Chen, Ying Song, Wei Li

Arbitrary-oriented object detection (AOOD) plays a significant role for image understanding in remote sensing scenarios. The existing AOOD methods face the challenges of ambiguity and high costs in angle representation. To this end, a multi-grained angle representation (MGAR) method, consisting of coarse-grained angle classification (CAC) and fine-grained angle regression (FAR), is proposed. Specifically, the designed CAC avoids the ambiguity of angle prediction by discrete angular encoding (DAE) and reduces complexity by coarsening the granularity of DAE. Based on CAC, FAR is developed to refine the angle prediction with much lower costs than narrowing the granularity of DAE. Furthermore, an Intersection over Union (IoU) aware FAR-Loss (IFL) is designed to improve accuracy of angle prediction using an adaptive re-weighting mechanism guided by IoU. Extensive experiments are performed on several public remote sensing datasets, which demonstrate the effectiveness of the proposed MGAR. Moreover, experiments on embedded devices demonstrate that the proposed MGAR is also friendly for lightweight deployments.
PDF 13 pages, 9 figures, 14 tables

点此查看论文截图

Hardware faults that matter: Understanding and Estimating the safety impact of hardware faults on object detection DNNs

Authors:Syed Qutub, Florian Geissler, Yang Peng, Ralf Grafe, Michael Paulitsch, Gereon Hinz, Alois Knoll

Object detection neural network models need to perform reliably in highly dynamic and safety-critical environments like automated driving or robotics. Therefore, it is paramount to verify the robustness of the detection under unexpected hardware faults like soft errors that can impact a systems perception module. Standard metrics based on average precision produce model vulnerability estimates at the object level rather than at an image level. As we show in this paper, this does not provide an intuitive or representative indicator of the safety-related impact of silent data corruption caused by bit flips in the underlying memory but can lead to an over- or underestimation of typical fault-induced hazards. With an eye towards safety-related real-time applications, we propose a new metric IVMOD (Image-wise Vulnerability Metric for Object Detection) to quantify vulnerability based on an incorrect image-wise object detection due to false positive (FPs) or false negative (FNs) objects, combined with a severity analysis. The evaluation of several representative object detection models shows that even a single bit flip can lead to a severe silent data corruption event with potentially critical safety implications, with e.g., up to (much greater than) 100 FPs generated, or up to approx. 90% of true positives (TPs) are lost in an image. Furthermore, with a single stuck-at-1 fault, an entire sequence of images can be affected, causing temporally persistent ghost detections that can be mistaken for actual objects (covering up to approx. 83% of the image). Furthermore, actual objects in the scene are continuously missed (up to approx. 64% of TPs are lost). Our work establishes a detailed understanding of the safety-related vulnerability of such critical workloads against hardware faults.
PDF 15 pages, accepted in safecomp22 conference

点此查看论文截图

Adversarial Detection: Attacking Object Detection in Real Time

Authors:Han Wu, Syed Yunas, Sareh Rowlands, Wenjie Ruan, Johan Wahlstrom

Intelligent robots hinge on accurate object detection models to perceive the environment. Advances in deep learning security unveil that object detection models are vulnerable to adversarial attacks. However, prior research primarily focuses on attacking static images or offline videos. It is still unclear if such attacks could jeopardize real-world robotic applications in dynamic environments. There is still a gap between theoretical discoveries and real-world applications. We bridge the gap by proposing the first real-time online attack against object detection models. We devised three attacks that fabricate bounding boxes for nonexistent objects at desired locations.
PDF 7 pages, 10 figures

点此查看论文截图

Automatic counting of mounds on UAV images: combining instance segmentation and patch-level correction

Authors:Majid Nikougoftar Nategh, Ahmed Zgaren, Wassim Bouachir, Nizar Bouguila

Site preparation by mounding is a commonly used silvicultural treatment that improves tree growth conditions by mechanically creating planting microsites called mounds. Following site preparation, the next critical step is to count the number of mounds, which provides forest managers with a precise estimate of the number of seedlings required for a given plantation block. Counting the number of mounds is generally conducted through manual field surveys by forestry workers, which is costly and prone to errors, especially for large areas. To address this issue, we present a novel framework exploiting advances in Unmanned Aerial Vehicle (UAV) imaging and computer vision to accurately estimate the number of mounds on a planting block. The proposed framework comprises two main components. First, we exploit a visual recognition method based on a deep learning algorithm for multiple object detection by pixel-based segmentation. This enables a preliminary count of visible mounds, as well as other frequently seen objects (e.g. trees, debris, accumulation of water), to be used to characterize the planting block. Second, since visual recognition could limited by several perturbation factors (e.g. mound erosion, occlusion), we employ a machine learning estimation function that predicts the final number of mounds based on the local block properties extracted in the first stage. We evaluate the proposed framework on a new UAV dataset representing numerous planting blocks with varying features. The proposed method outperformed manual counting methods in terms of relative counting precision, indicating that it has the potential to be advantageous and efficient in difficult situations.
PDF 8 pages; IEEE International Conference on Machine Learning and Applications

点此查看论文截图

PixTrack: Precise 6DoF Object Pose Tracking using NeRF Templates and Feature-metric Alignment

Authors:Prajwal Chidananda, Saurabh Nair, Douglas Lee, Adrian Kaehler

We present PixTrack, a vision based object pose tracking framework using novel view synthesis and deep feature-metric alignment. Our evaluations demonstrate that our method produces highly accurate, robust, and jitter-free 6DoF pose estimates of objects in RGB images without the need of any data annotation or trajectory smoothing. Our method is also computationally efficient making it easy to have multi-object tracking with no alteration to our method and just using CPU multiprocessing.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录