强化学习


2022-09-09 更新

A Multi-Agent Reinforcement Learning Approach For Safe and Efficient Behavior Planning Of Connected Autonomous Vehicles

Authors:Songyang Han, Shanglin Zhou, Jiangwei Wang, Lynn Pepin, Caiwen Ding, Jie Fu, Fei Miao

The recent advancements in wireless technology enable connected autonomous vehicles (CAVs) to gather information about their environment by vehicle-to-vehicle (V2V) communication. In this work, we design an information-sharing-based multi-agent reinforcement learning (MARL) framework for CAVs, to take advantage of the extra information when making decisions to improve traffic efficiency and safety. The safe actor-critic algorithm we propose has two new techniques: the truncated Q-function and safe action mapping. The truncated Q-function utilizes the shared information from neighboring CAVs such that the joint state and action spaces of the Q-function do not grow in our algorithm for a large-scale CAV system. We prove the bound of the approximation error between the truncated-Q and global Q-functions. The safe action mapping provides a provable safety guarantee for both the training and execution based on control barrier functions. Using the CARLA simulator for experiments, we show that our approach can improve the CAV system’s efficiency in terms of average velocity and comfort under different CAV ratios and different traffic densities. We also show that our approach avoids the execution of unsafe actions and always maintains a safe distance from other vehicles. We construct an obstacle-at-corner scenario to show that the shared vision can help CAVs to observe obstacles earlier and take action to avoid traffic jams.
PDF This paper is submitted to IEEE Transactions on Intelligent Transportation Systems

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录