NeRF


2022-09-06 更新

NeROIC: Neural Rendering of Objects from Online Image Collections

Authors:Zhengfei Kuang, Kyle Olszewski, Menglei Chai, Zeng Huang, Panos Achlioptas, Sergey Tulyakov

We present a novel method to acquire object representations from online image collections, capturing high-quality geometry and material properties of arbitrary objects from photographs with varying cameras, illumination, and backgrounds. This enables various object-centric rendering applications such as novel-view synthesis, relighting, and harmonized background composition from challenging in-the-wild input. Using a multi-stage approach extending neural radiance fields, we first infer the surface geometry and refine the coarsely estimated initial camera parameters, while leveraging coarse foreground object masks to improve the training efficiency and geometry quality. We also introduce a robust normal estimation technique which eliminates the effect of geometric noise while retaining crucial details. Lastly, we extract surface material properties and ambient illumination, represented in spherical harmonics with extensions that handle transient elements, e.g. sharp shadows. The union of these components results in a highly modular and efficient object acquisition framework. Extensive evaluations and comparisons demonstrate the advantages of our approach in capturing high-quality geometry and appearance properties useful for rendering applications.
PDF SIGGRAPH 2022 (Journal Track). Project page: https://formyfamily.github.io/NeROIC/ Code repository: https://github.com/snap-research/NeROIC/

点此查看论文截图

Dual-Space NeRF: Learning Animatable Avatars and Scene Lighting in Separate Spaces

Authors:Yihao Zhi, Shenhan Qian, Xinhao Yan, Shenghua Gao

Modeling the human body in a canonical space is a common practice for capturing and animation. But when involving the neural radiance field (NeRF), learning a static NeRF in the canonical space is not enough because the lighting of the body changes when the person moves even though the scene lighting is constant. Previous methods alleviate the inconsistency of lighting by learning a per-frame embedding, but this operation does not generalize to unseen poses. Given that the lighting condition is static in the world space while the human body is consistent in the canonical space, we propose a dual-space NeRF that models the scene lighting and the human body with two MLPs in two separate spaces. To bridge these two spaces, previous methods mostly rely on the linear blend skinning (LBS) algorithm. However, the blending weights for LBS of a dynamic neural field are intractable and thus are usually memorized with another MLP, which does not generalize to novel poses. Although it is possible to borrow the blending weights of a parametric mesh such as SMPL, the interpolation operation introduces more artifacts. In this paper, we propose to use the barycentric mapping, which can directly generalize to unseen poses and surprisingly achieves superior results than LBS with neural blending weights. Quantitative and qualitative results on the Human3.6M and the ZJU-MoCap datasets show the effectiveness of our method.
PDF Accepted by 3DV 2022

点此查看论文截图

Cross-Spectral Neural Radiance Fields

Authors:Matteo Poggi, Pierluigi Zama Ramirez, Fabio Tosi, Samuele Salti, Stefano Mattoccia, Luigi Di Stefano

We propose X-NeRF, a novel method to learn a Cross-Spectral scene representation given images captured from cameras with different light spectrum sensitivity, based on the Neural Radiance Fields formulation. X-NeRF optimizes camera poses across spectra during training and exploits Normalized Cross-Device Coordinates (NXDC) to render images of different modalities from arbitrary viewpoints, which are aligned and at the same resolution. Experiments on 16 forward-facing scenes, featuring color, multi-spectral and infrared images, confirm the effectiveness of X-NeRF at modeling Cross-Spectral scene representations.
PDF 3DV 2022. Project page: https://cvlab-unibo.github.io/xnerf-web/

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录