2022-09-05 更新
IMG2IMU: Applying Knowledge from Large-Scale Images to IMU Applications via Contrastive Learning
Authors:Hyungjun Yoon, Hyeongheon Cha, Canh Hoang Nguyen, Taesik Gong, Sung-Ju Lee
Recent advances in machine learning showed that pre-training representations acquired via self-supervised learning could achieve high accuracy on tasks with small training data. Unlike in vision and natural language processing domains, such pre-training for IMU-based applications is challenging, as there are only a few publicly available datasets with sufficient size and diversity to learn generalizable representations. To overcome this problem, we propose IMG2IMU, a novel approach that adapts pre-train representation from large-scale images to diverse few-shot IMU sensing tasks. We convert the sensor data into visually interpretable spectrograms for the model to utilize the knowledge gained from vision. Further, we apply contrastive learning on an augmentation set we designed to learn representations that are tailored to interpreting sensor data. Our extensive evaluations on five different IMU sensing tasks show that IMG2IMU consistently outperforms the baselines, illustrating that vision knowledge can be incorporated into a few-shot learning environment for IMU sensing tasks.
PDF 16 pages
点此查看论文截图
FOLIO: Natural Language Reasoning with First-Order Logic
Authors:Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Luke Benson, Lucy Sun, Ekaterina Zubova, Yujie Qiao, Matthew Burtell, David Peng, Jonathan Fan, Yixin Liu, Brian Wong, Malcolm Sailor, Ansong Ni, Linyong Nan, Jungo Kasai, Tao Yu, Rui Zhang, Shafiq Joty, Alexander R. Fabbri, Wojciech Kryscinski, Xi Victoria Lin, Caiming Xiong, Dragomir Radev
We present FOLIO, a human-annotated, open-domain, and logically complex and diverse dataset for reasoning in natural language (NL), equipped with first order logic (FOL) annotations. FOLIO consists of 1,435 examples (unique conclusions), each paired with one of 487 sets of premises which serve as rules to be used to deductively reason for the validity of each conclusion. The logical correctness of premises and conclusions is ensured by their parallel FOL annotations, which are automatically verified by our FOL inference engine. In addition to the main NL reasoning task, NL-FOL pairs in FOLIO automatically constitute a new NL-FOL translation dataset using FOL as the logical form. Our experiments on FOLIO systematically evaluate the FOL reasoning ability of supervised fine-tuning on medium-sized language models (BERT, RoBERTa) and few-shot prompting on large language models (GPT-NeoX, OPT, GPT-3, Codex). For NL-FOL translation, we experiment with GPT-3 and Codex. Our results show that one of the most capable Large Language Model (LLM) publicly available, GPT-3 davinci, achieves only slightly better than random results with few-shot prompting on a subset of FOLIO, and the model is especially bad at predicting the correct truth values for False and Unknown conclusions. Our dataset and code are available at https://github.com/Yale-LILY/FOLIO.
PDF
点此查看论文截图
Hierarchical Relational Learning for Few-Shot Knowledge Graph Completion
Authors:Han Wu, Jianyuan Guo, Bala Rajaratnam, Jie Yin
Knowledge graphs (KGs) are known for their large scale and knowledge inference ability, but are also notorious for the incompleteness associated with them. Due to the long-tail distribution of the relations in KGs, few-shot KG completion has been proposed as a solution to alleviate incompleteness and expand the coverage of KGs. It aims to make predictions for triplets involving novel relations when only a few training triplets are provided as reference. Previous methods have mostly focused on designing local neighbor aggregators to learn entity-level information and/or imposing sequential dependency assumption at the triplet level to learn meta relation information. However, valuable pairwise triplet-level interactions and context-level relational information have been largely overlooked for learning meta representations of few-shot relations. In this paper, we propose a hierarchical relational learning method (HiRe) for few-shot KG completion. By jointly capturing three levels of relational information (entity-level, triplet-level and context-level), HiRe can effectively learn and refine the meta representation of few-shot relations, and consequently generalize very well to new unseen relations. Extensive experiments on two benchmark datasets validate the superiority of HiRe against other state-of-the-art methods.
PDF 10 pages, 5 figures