NeRF


2022-09-02 更新

HVTR: Hybrid Volumetric-Textural Rendering for Human Avatars

Authors:Tao Hu, Tao Yu, Zerong Zheng, He Zhang, Yebin Liu, Matthias Zwicker

We propose a novel neural rendering pipeline, Hybrid Volumetric-Textural Rendering (HVTR), which synthesizes virtual human avatars from arbitrary poses efficiently and at high quality. First, we learn to encode articulated human motions on a dense UV manifold of the human body surface. To handle complicated motions (e.g., self-occlusions), we then leverage the encoded information on the UV manifold to construct a 3D volumetric representation based on a dynamic pose-conditioned neural radiance field. While this allows us to represent 3D geometry with changing topology, volumetric rendering is computationally heavy. Hence we employ only a rough volumetric representation using a pose-conditioned downsampled neural radiance field (PD-NeRF), which we can render efficiently at low resolutions. In addition, we learn 2D textural features that are fused with rendered volumetric features in image space. The key advantage of our approach is that we can then convert the fused features into a high-resolution, high-quality avatar by a fast GAN-based textural renderer. We demonstrate that hybrid rendering enables HVTR to handle complicated motions, render high-quality avatars under user-controlled poses/shapes and even loose clothing, and most importantly, be efficient at inference time. Our experimental results also demonstrate state-of-the-art quantitative results.
PDF Accepted to 3DV 2022. See more results at https://www.cs.umd.edu/~taohu/hvtr/ Demo: https://www.youtube.com/watch?v=LE0-YpbLlkY

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录