GAN


2022-08-30 更新

Learning From Positive and Unlabeled Data Using Observer-GAN

Authors:Omar Zamzam, Haleh Akrami, Richard Leahy

The problem of learning from positive and unlabeled data (A.K.A. PU learning) has been studied in a binary (i.e., positive versus negative) classification setting, where the input data consist of (1) observations from the positive class and their corresponding labels, (2) unlabeled observations from both positive and negative classes. Generative Adversarial Networks (GANs) have been used to reduce the problem to the supervised setting with the advantage that supervised learning has state-of-the-art accuracy in classification tasks. In order to generate \textit{pseudo}-negative observations, GANs are trained on positive and unlabeled observations with a modified loss. Using both positive and \textit{pseudo}-negative observations leads to a supervised learning setting. The generation of pseudo-negative observations that are realistic enough to replace missing negative class samples is a bottleneck for current GAN-based algorithms. By including an additional classifier into the GAN architecture, we provide a novel GAN-based approach. In our suggested method, the GAN discriminator instructs the generator only to produce samples that fall into the unlabeled data distribution, while a second classifier (observer) network monitors the GAN training to: (i) prevent the generated samples from falling into the positive distribution; and (ii) learn the features that are the key distinction between the positive and negative observations. Experiments on four image datasets demonstrate that our trained observer network performs better than existing techniques in discriminating between real unseen positive and negative samples.
PDF

点此查看论文截图

Training and Tuning Generative Neural Radiance Fields for Attribute-Conditional 3D-Aware Face Generation

Authors:Jichao Zhang, Aliaksandr Siarohin, Yahui Liu, Hao Tang, Nicu Sebe, Wei Wang

3D-aware GANs based on generative neural radiance fields (GNeRF) have achieved impressive high-quality image generation, while preserving strong 3D consistency. The most notable achievements are made in the face generation domain. However, most of these models focus on improving view consistency but neglect a disentanglement aspect, thus these models cannot provide high-quality semantic/attribute control over generation. To this end, we introduce a conditional GNeRF model that uses specific attribute labels as input in order to improve the controllabilities and disentangling abilities of 3D-aware generative models. We utilize the pre-trained 3D-aware model as the basis and integrate a dual-branches attribute-editing module (DAEM), that utilize attribute labels to provide control over generation. Moreover, we propose a TRIOT (TRaining as Init, and Optimizing for Tuning) method to optimize the latent vector to improve the precision of the attribute-editing further. Extensive experiments on the widely used FFHQ show that our model yields high-quality editing with better view consistency while preserving the non-target regions. The code is available at https://github.com/zhangqianhui/TT-GNeRF.
PDF 14 pages

点此查看论文截图

Comparison and Analysis of Image-to-Image Generative Adversarial Networks: A Survey

Authors:Sagar Saxena, Mohammad Nayeem Teli

Generative Adversarial Networks (GANs) have recently introduced effective methods of performing Image-to-Image translations. These models can be applied and generalized to a variety of domains in Image-to-Image translation without changing any parameters. In this paper, we survey and analyze eight Image-to-Image Generative Adversarial Networks: Pix2Pix, CycleGAN, CoGAN, StarGAN, MUNIT, StarGAN2, DA-GAN, and Self Attention GAN. Each of these models presented state-of-the-art results and introduced new techniques to build Image-to-Image GANs. In addition to a survey of the models, we also survey the 18 datasets they were trained on and the 9 metrics they were evaluated on. Finally, we present results of a controlled experiment for 6 of these models on a common set of metrics and datasets. The results were mixed and showed that, on certain datasets, tasks, and metrics, some models outperformed others. The last section of this paper discusses those results and establishes areas of future research. As researchers continue to innovate new Image-to-Image GANs, it is important to gain a good understanding of the existing methods, datasets, and metrics. This paper provides a comprehensive overview and discussion to help build this foundation.
PDF 36 pages, 22 figures, Preprint; format changed, typos corrected

点此查看论文截图

T-Person-GAN: Text-to-Person Image Generation with Identity-Consistency and Manifold Mix-Up

Authors:Lin Wu, Yang Wang, Feng Zheng, Qi Tian, Meng Wang

In this paper, we present an end-to-end approach to generate high-resolution person images conditioned on texts only. State-of-the-art text-to-image generation models are mainly designed for center-object generation, e.g., flowers and birds. Unlike center-placed objects with similar shapes and orientation, person image generation is a more challenging task, for which we observe the followings: 1) the generated images for the same person exhibit visual details with identity-consistency, e.g., identity-related textures/clothes/shoes across the images, and 2) those images should be discriminant for being robust against the inter-person variations caused by visual ambiguities. To address the above challenges, we develop an effective generative model to produce person images with two novel mechanisms. In particular, our first mechanism (called T-Person-GAN-ID) is to integrate the one-stream generator with an identity-preserving network such that the representations of generated data are regularized in their feature space to ensure the identity-consistency. The second mechanism (called T-Person-GAN-ID-MM) is based on the manifold mix-up to produce mixed images via the linear interpolation across generated images from different manifold identities, and we further enforce such interpolated images to be linearly classified in the feature space. This amounts to learning a linear classification boundary that can perfectly separate images from two identities. Our proposed method is empirically validated to achieve a remarkable improvement in text-to-person image generation. Our architecture is orthogonal to StackGAN++ , and focuses on person image generation, with all of them together to enrich the spectrum of GANs for the image generation task. Codes are available on \url{https://github.com/linwu-github/Person-Image-Generation.git}.
PDF Under review

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录