Few-Shot


2022-08-30 更新

Few-Shot Learning Meets Transformer: Unified Query-Support Transformers for Few-Shot Classification

Authors:Xixi Wang, Xiao Wang, Bo Jiang, Bin Luo

Few-shot classification which aims to recognize unseen classes using very limited samples has attracted more and more attention. Usually, it is formulated as a metric learning problem. The core issue of few-shot classification is how to learn (1) consistent representations for images in both support and query sets and (2) effective metric learning for images between support and query sets. In this paper, we show that the two challenges can be well modeled simultaneously via a unified Query-Support TransFormer (QSFormer) model. To be specific,the proposed QSFormer involves global query-support sample Transformer (sampleFormer) branch and local patch Transformer (patchFormer) learning branch. sampleFormer aims to capture the dependence of samples in support and query sets for image representation. It adopts the Encoder, Decoder and Cross-Attention to respectively model the Support, Query (image) representation and Metric learning for few-shot classification task. Also, as a complementary to global learning branch, we adopt a local patch Transformer to extract structural representation for each image sample by capturing the long-range dependence of local image patches. In addition, a novel Cross-scale Interactive Feature Extractor (CIFE) is proposed to extract and fuse multi-scale CNN features as an effective backbone module for the proposed few-shot learning method. All modules are integrated into a unified framework and trained in an end-to-end manner. Extensive experiments on four popular datasets demonstrate the effectiveness and superiority of the proposed QSFormer.
PDF

点此查看论文截图

JARVIS: A Neuro-Symbolic Commonsense Reasoning Framework for Conversational Embodied Agents

Authors:Kaizhi Zheng, Kaiwen Zhou, Jing Gu, Yue Fan, Jialu Wang, Zonglin Li, Xuehai He, Xin Eric Wang

Building a conversational embodied agent to execute real-life tasks has been a long-standing yet quite challenging research goal, as it requires effective human-agent communication, multi-modal understanding, long-range sequential decision making, etc. Traditional symbolic methods have scaling and generalization issues, while end-to-end deep learning models suffer from data scarcity and high task complexity, and are often hard to explain. To benefit from both worlds, we propose a Neuro-Symbolic Commonsense Reasoning (JARVIS) framework for modular, generalizable, and interpretable conversational embodied agents. First, it acquires symbolic representations by prompting large language models (LLMs) for language understanding and sub-goal planning, and by constructing semantic maps from visual observations. Then the symbolic module reasons for sub-goal planning and action generation based on task- and action-level common sense. Extensive experiments on the TEACh dataset validate the efficacy and efficiency of our JARVIS framework, which achieves state-of-the-art (SOTA) results on all three dialog-based embodied tasks, including Execution from Dialog History (EDH), Trajectory from Dialog (TfD), and Two-Agent Task Completion (TATC) (e.g., our method boosts the unseen Success Rate on EDH from 6.1\% to 15.8\%). Moreover, we systematically analyze the essential factors that affect the task performance and also demonstrate the superiority of our method in few-shot settings. Our JARVIS model ranks first in the Alexa Prize SimBot Public Benchmark Challenge.
PDF 20 pages

点此查看论文截图

MDIA: A Benchmark for Multilingual Dialogue Generation in 46 Languages

Authors:Qingyu Zhang, Xiaoyu Shen, Ernie Chang, Jidong Ge, Pengke Chen

Owing to the lack of corpora for low-resource languages, current works on dialogue generation have mainly focused on English. In this paper, we present mDIA, the first large-scale multilingual benchmark for dialogue generation across low- to high-resource languages. It covers real-life conversations in 46 languages across 19 language families. We present baseline results obtained by fine-tuning the multilingual, non-dialogue-focused pre-trained model mT5 as well as English-centric, dialogue-focused pre-trained chatbot DialoGPT. The results show that mT5-based models perform better on sacreBLEU and BertScore but worse on diversity. Even though promising results are found in few-shot and zero-shot scenarios, there is a large gap between the generation quality in English and other languages. We hope that the release of mDIA could encourage more works on multilingual dialogue generation to promote language diversity.
PDF The dataset and processing scripts are available in https://github.com/DoctorDream/mDIA

点此查看论文截图

Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning

Authors:Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, Colin Raffel

Few-shot in-context learning (ICL) enables pre-trained language models to perform a previously-unseen task without any gradient-based training by feeding a small number of training examples as part of the input. ICL incurs substantial computational, memory, and storage costs because it involves processing all of the training examples every time a prediction is made. Parameter-efficient fine-tuning (PEFT) (e.g. adapter modules, prompt tuning, sparse update methods, etc.) offers an alternative paradigm where a small set of parameters are trained to enable a model to perform the new task. In this paper, we rigorously compare few-shot ICL and PEFT and demonstrate that the latter offers better accuracy as well as dramatically lower computational costs. Along the way, we introduce a new PEFT method called (IA)$^3$ that scales activations by learned vectors, attaining stronger performance while only introducing a relatively tiny amount of new parameters. We also propose a simple recipe based on the T0 model called T-Few that can be applied to new tasks without task-specific tuning or modifications. We validate the effectiveness of T-Few on completely unseen tasks by applying it to the RAFT benchmark, attaining super-human performance for the first time and outperforming the state-of-the-art by 6% absolute. All of the code used in our experiments is publicly available.
PDF

点此查看论文截图

Prompt Tuning with Soft Context Sharing for Vision-Language Models

Authors:Kun Ding, Ying Wang, Pengzhang Liu, Qiang Yu, Haojian Zhang, Shiming Xiang, Chunhong Pan

Vision-language models have recently shown great potential on many computer vision tasks. Meanwhile, prior work demonstrates prompt tuning designed for vision-language models could acquire superior performance on few-shot image recognition compared to linear probe, a strong baseline. In real-world applications, many few-shot tasks are correlated, particularly in a specialized area. However, such information is ignored by previous work. Inspired by the fact that modeling task relationships by multi-task learning can usually boost performance, we propose a novel method SoftCPT (Soft Context Sharing for Prompt Tuning) to fine-tune pre-trained vision-language models on multiple target few-shot tasks, simultaneously. Specifically, we design a task-shared meta network to generate prompt vector for each task using pre-defined task name together with a learnable meta prompt as input. As such, the prompt vectors of all tasks will be shared in a soft manner. The parameters of this shared meta network as well as the meta prompt vector are tuned on the joint training set of all target tasks. Extensive experiments on three multi-task few-shot datasets show that SoftCPT outperforms the representative single-task prompt tuning method CoOp [78] by a large margin, implying the effectiveness of multi-task learning in vision-language prompt tuning. The source code and data will be made publicly available.
PDF

点此查看论文截图

Robust Prototypical Few-Shot Organ Segmentation with Regularized Neural-ODEs

Authors:Prashant Pandey, Mustafa Chasmai, Tanuj Sur, Brejesh Lall

Despite the tremendous progress made by deep learning models in image semantic segmentation, they typically require large annotated examples, and increasing attention is being diverted to problem settings like Few-Shot Learning (FSL) where only a small amount of annotation is needed for generalisation to novel classes. This is especially seen in medical domains where dense pixel-level annotations are expensive to obtain. In this paper, we propose Regularized Prototypical Neural Ordinary Differential Equation (R-PNODE), a method that leverages intrinsic properties of Neural-ODEs, assisted and enhanced by additional cluster and consistency losses to perform Few-Shot Segmentation (FSS) of organs. R-PNODE constrains support and query features from the same classes to lie closer in the representation space thereby improving the performance over the existing Convolutional Neural Network (CNN) based FSS methods. We further demonstrate that while many existing Deep CNN based methods tend to be extremely vulnerable to adversarial attacks, R-PNODE exhibits increased adversarial robustness for a wide array of these attacks. We experiment with three publicly available multi-organ segmentation datasets in both in-domain and cross-domain FSS settings to demonstrate the efficacy of our method. In addition, we perform experiments with seven commonly used adversarial attacks in various settings to demonstrate R-PNODE’s robustness. R-PNODE outperforms the baselines for FSS by significant margins and also shows superior performance for a wide array of attacks varying in intensity and design.
PDF

点此查看论文截图

Towards Accurate Reconstruction of 3D Scene Shape from A Single Monocular Image

Authors:Wei Yin, Jianming Zhang, Oliver Wang, Simon Nicklaus, Simon Chen, Yifan Liu, Chunhua Shen

Despite significant progress made in the past few years, challenges remain for depth estimation using a single monocular image. First, it is nontrivial to train a metric-depth prediction model that can generalize well to diverse scenes mainly due to limited training data. Thus, researchers have built large-scale relative depth datasets that are much easier to collect. However, existing relative depth estimation models often fail to recover accurate 3D scene shapes due to the unknown depth shift caused by training with the relative depth data. We tackle this problem here and attempt to estimate accurate scene shapes by training on large-scale relative depth data, and estimating the depth shift. To do so, we propose a two-stage framework that first predicts depth up to an unknown scale and shift from a single monocular image, and then exploits 3D point cloud data to predict the depth shift and the camera’s focal length that allow us to recover 3D scene shapes. As the two modules are trained separately, we do not need strictly paired training data. In addition, we propose an image-level normalized regression loss and a normal-based geometry loss to improve training with relative depth annotation. We test our depth model on nine unseen datasets and achieve state-of-the-art performance on zero-shot evaluation. Code is available at: https://git.io/Depth
PDF 20 pages. Journal version of the conference paper “Learning to Recover 3D Scene Shape from a Single Image”. arXiv admin note: substantial text overlap with arXiv:2012.09365

点此查看论文截图

CounTR: Transformer-based Generalised Visual Counting

Authors:Chang Liu, Yujie Zhong, Andrew Zisserman, Weidi Xie

In this paper, we consider the problem of generalised visual object counting, with the goal of developing a computational model for counting the number of objects from arbitrary semantic categories, using arbitrary number of “exemplars”, i.e. zero-shot or few-shot counting. To this end, we make the following four contributions: (1) We introduce a novel transformer-based architecture for generalised visual object counting, termed as Counting Transformer (CounTR), which explicitly capture the similarity between image patches or with given “exemplars” with the attention mechanism;(2) We adopt a two-stage training regime, that first pre-trains the model with self-supervised learning, and followed by supervised fine-tuning;(3) We propose a simple, scalable pipeline for synthesizing training images with a large number of instances or that from different semantic categories, explicitly forcing the model to make use of the given “exemplars”;(4) We conduct thorough ablation studies on the large-scale counting benchmark, e.g. FSC-147, and demonstrate state-of-the-art performance on both zero and few-shot settings.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录