检测/分割/跟踪


2022-08-27 更新

Detecting the unknown in Object Detection

Authors:Dario Fontanel, Matteo Tarantino, Fabio Cermelli, Barbara Caputo

Object detection methods have witnessed impressive improvements in the last years thanks to the design of novel neural network architectures and the availability of large scale datasets. However, current methods have a significant limitation: they are able to detect only the classes observed during training time, that are only a subset of all the classes that a detector may encounter in the real world. Furthermore, the presence of unknown classes is often not considered at training time, resulting in methods not even able to detect that an unknown object is present in the image. In this work, we address the problem of detecting unknown objects, known as open-set object detection. We propose a novel training strategy, called UNKAD, able to predict unknown objects without requiring any annotation of them, exploiting non annotated objects that are already present in the background of training images. In particular, exploiting the four-steps training strategy of Faster R-CNN, UNKAD first identifies and pseudo-labels unknown objects and then uses the pseudo-annotations to train an additional unknown class. While UNKAD can directly detect unknown objects, we further combine it with previous unknown detection techniques, showing that it improves their performance at no costs.
PDF

点此查看论文截图

Detecting Object States vs Detecting Objects: A New Dataset and a Quantitative Experimental Study

Authors:Filippos Gouidis, Theodore Patkos, Antonis Argyros, Dimitris Plexousakis

The detection of object states in images (State Detection - SD) is a problem of both theoretical and practical importance and it is tightly interwoven with other important computer vision problems, such as action recognition and affordance detection. It is also highly relevant to any entity that needs to reason and act in dynamic domains, such as robotic systems and intelligent agents. Despite its importance, up to now, the research on this problem has been limited. In this paper, we attempt a systematic study of the SD problem. First, we introduce the Object State Detection Dataset (OSDD), a new publicly available dataset consisting of more than 19,000 annotations for 18 object categories and 9 state classes. Second, using a standard deep learning framework used for Object Detection (OD), we conduct a number of appropriately designed experiments, towards an in-depth study of the behavior of the SD problem. This study enables the setup of a baseline on the performance of SD, as well as its relative performance in comparison to OD, in a variety of scenarios. Overall, the experimental outcomes confirm that SD is harder than OD and that tailored SD methods need to be developed for addressing effectively this significant problem.
PDF Submitted to the Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISAPP)

点此查看论文截图

A Comprehensive Study of Real-Time Object Detection Networks Across Multiple Domains: A Survey

Authors:Elahe Arani, Shruthi Gowda, Ratnajit Mukherjee, Omar Magdy, Senthilkumar Kathiresan, Bahram Zonooz

Deep neural network based object detectors are continuously evolving and are used in a multitude of applications, each having its own set of requirements. While safety-critical applications need high accuracy and reliability, low-latency tasks need resource and energy-efficient networks. Real-time detectors, which are a necessity in high-impact real-world applications, are continuously proposed, but they overemphasize the improvements in accuracy and speed while other capabilities such as versatility, robustness, resource and energy efficiency are omitted. A reference benchmark for existing networks does not exist, nor does a standard evaluation guideline for designing new networks, which results in ambiguous and inconsistent comparisons. We, thus, conduct a comprehensive study on multiple real-time detectors (anchor-, keypoint-, and transformer-based) on a wide range of datasets and report results on an extensive set of metrics. We also study the impact of variables such as image size, anchor dimensions, confidence thresholds, and architecture layers on the overall performance. We analyze the robustness of detection networks against distribution shifts, natural corruptions, and adversarial attacks. Also, we provide a calibration analysis to gauge the reliability of the predictions. Finally, to highlight the real-world impact, we conduct two unique case studies, on autonomous driving and healthcare applications. To further gauge the capability of networks in critical real-time applications, we report the performance after deploying the detection networks on edge devices. Our extensive empirical study can act as a guideline for the industrial community to make an informed choice on the existing networks. We also hope to inspire the research community towards a new direction in the design and evaluation of networks that focuses on a bigger and holistic overview for a far-reaching impact.
PDF Published in Transactions on Machine Learning Research (TMLR) with Survey Certification

点此查看论文截图

Multi-Granularity Distillation Scheme Towards Lightweight Semi-Supervised Semantic Segmentation

Authors:Jie Qin, Jie Wu, Ming Li, Xuefeng Xiao, Min Zheng, Xingang Wang

Albeit with varying degrees of progress in the field of Semi-Supervised Semantic Segmentation, most of its recent successes are involved in unwieldy models and the lightweight solution is still not yet explored. We find that existing knowledge distillation techniques pay more attention to pixel-level concepts from labeled data, which fails to take more informative cues within unlabeled data into account. Consequently, we offer the first attempt to provide lightweight SSSS models via a novel multi-granularity distillation (MGD) scheme, where multi-granularity is captured from three aspects: i) complementary teacher structure; ii) labeled-unlabeled data cooperative distillation; iii) hierarchical and multi-levels loss setting. Specifically, MGD is formulated as a labeled-unlabeled data cooperative distillation scheme, which helps to take full advantage of diverse data characteristics that are essential in the semi-supervised setting. Image-level semantic-sensitive loss, region-level content-aware loss, and pixel-level consistency loss are set up to enrich hierarchical distillation abstraction via structurally complementary teachers. Experimental results on PASCAL VOC2012 and Cityscapes reveal that MGD can outperform the competitive approaches by a large margin under diverse partition protocols. For example, the performance of ResNet-18 and MobileNet-v2 backbone is boosted by 11.5% and 4.6% respectively under 1/16 partition protocol on Cityscapes. Although the FLOPs of the model backbone is compressed by 3.4-5.3x (ResNet-18) and 38.7-59.6x (MobileNetv2), the model manages to achieve satisfactory segmentation results.
PDF Accepted by ECCV2022

点此查看论文截图

Prompt-Matched Semantic Segmentation

Authors:Lingbo Liu, Bruce X. B. Yu, Jianlong Chang, Qi Tian, Chang-Wen Chen

The objective of this work is to explore how to effectively and efficiently adapt pre-trained foundation models to various downstream tasks of image semantic segmentation. Conventional methods usually fine-tuned the whole networks for each specific dataset and it was burdensome to store the massive parameters of these networks. A few recent works attempted to insert some trainable parameters into the frozen network to learn visual prompts for efficient tuning. However, these works significantly modified the original structure of standard modules, making them inoperable on many existing high-speed inference devices, where standard modules and their parameters have been embedded. To facilitate prompt-based semantic segmentation, we propose a novel Inter-Stage Prompt-Matched Framework, which maintains the original structure of the foundation model while generating visual prompts adaptively for task-oriented tuning. Specifically, the pre-trained model is first divided into multiple stages, and their parameters are frozen and shared for all semantic segmentation tasks. A lightweight module termed Semantic-aware Prompt Matcher is then introduced to hierarchically interpolate between two stages to learn reasonable prompts for each specific task under the guidance of interim semantic maps. In this way, we can better stimulate the pre-trained knowledge of the frozen model to learn semantic concepts effectively on downstream datasets. Extensive experiments conducted on five benchmarks show that the proposed method can achieve a promising trade-off between parameter efficiency and performance effectiveness.
PDF

点此查看论文截图

Adversarial Vulnerability of Temporal Feature Networks for Object Detection

Authors:Svetlana Pavlitskaya, Nikolai Polley, Michael Weber, J. Marius Zöllner

Taking into account information across the temporal domain helps to improve environment perception in autonomous driving. However, it has not been studied so far whether temporally fused neural networks are vulnerable to deliberately generated perturbations, i.e. adversarial attacks, or whether temporal history is an inherent defense against them. In this work, we study whether temporal feature networks for object detection are vulnerable to universal adversarial attacks. We evaluate attacks of two types: imperceptible noise for the whole image and locally-bound adversarial patch. In both cases, perturbations are generated in a white-box manner using PGD. Our experiments confirm, that attacking even a portion of a temporal input suffices to fool the network. We visually assess generated perturbations to gain insights into the functioning of attacks. To enhance the robustness, we apply adversarial training using 5-PGD. Our experiments on KITTI and nuScenes datasets demonstrate, that a model robustified via K-PGD is able to withstand the studied attacks while keeping the mAP-based performance comparable to that of an unattacked model.
PDF Accepted for publication at ECCV 2022 SAIAD workshop

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录