NeRF


2022-08-11 更新

NeRFocus: Neural Radiance Field for 3D Synthetic Defocus

Authors:Yinhuai Wang, Shuzhou Yang, Yujie Hu, Jian Zhang

Neural radiance fields (NeRF) bring a new wave for 3D interactive experiences. However, as an important part of the immersive experiences, the defocus effects have not been fully explored within NeRF. Some recent NeRF-based methods generate 3D defocus effects in a post-process fashion by utilizing multiplane technology. Still, they are either time-consuming or memory-consuming. This paper proposes a novel thin-lens-imaging-based NeRF framework that can directly render various 3D defocus effects, dubbed NeRFocus. Unlike the pinhole, the thin lens refracts rays of a scene point, so its imaging on the sensor plane is scattered as a circle of confusion (CoC). A direct solution sampling enough rays to approximate this process is computationally expensive. Instead, we propose to inverse the thin lens imaging to explicitly model the beam path for each point on the sensor plane and generalize this paradigm to the beam path of each pixel, then use the frustum-based volume rendering to render each pixel’s beam path. We further design an efficient probabilistic training (p-training) strategy to simplify the training process vastly. Extensive experiments demonstrate that our NeRFocus can achieve various 3D defocus effects with adjustable camera pose, focus distance, and aperture size. Existing NeRF can be regarded as our special case by setting aperture size as zero to render large depth-of-field images. Despite such merits, NeRFocus does not sacrifice NeRF’s original performance (e.g., training and inference time, parameter consumption, rendering quality), which implies its great potential for broader application and further improvement. Code and video are available at https://github.com/wyhuai/NeRFocus.
PDF

点此查看论文截图

PREF: Phasorial Embedding Fields for Compact Neural Representations

Authors:Binbin Huang, Xinhao Yan, Anpei Chen, Shenghua Gao, Jingyi Yu

We present a phasorial embedding field \emph{PREF} as a compact representation to facilitate neural signal modeling and reconstruction tasks. Pure multi-layer perceptron (MLP) based neural techniques are biased towards low frequency signals and have relied on deep layers or Fourier encoding to avoid losing details. PREF instead employs a compact and physically explainable encoding field based on the phasor formulation of the Fourier embedding space. We conduct comprehensive experiments to demonstrate the advantages of PREF over the latest spatial embedding techniques. We then develop a highly efficient frequency learning framework using an approximated inverse Fourier transform scheme for PREF along with a novel Parseval regularizer. Extensive experiments show our efficient and compact frequency-based neural signal processing technique is on par with and even better than the state-of-the-art in 2D image completion, 3D SDF surface regression, and 5D radiance field reconstruction.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录