2022-08-09 更新
Aerial Monocular 3D Object Detection
Authors:Yue Hu, Shaoheng Fang, Weidi Xie, Siheng Chen
Drones equipped with cameras can significantly enhance human ability to perceive the world because of their remarkable maneuverability in 3D space. Ironically, object detection for drones has always been conducted in the 2D image space, which fundamentally limits their ability to understand 3D scenes. Furthermore, existing 3D object detection methods developed for autonomous driving cannot be directly applied to drones due to the lack of deformation modeling, which is essential for the distant aerial perspective with sensitive distortion and small objects. To fill the gap, this work proposes a dual-view detection system named DVDET to achieve aerial monocular object detection in both the 2D image space and the 3D physical space. To address the severe view deformation issue, we propose a novel trainable geo-deformable transformation module that can properly warp information from the drone’s perspective to the BEV. Compared to the monocular methods for cars, our transformation includes a learnable deformable network for explicitly revising the severe deviation. To address the dataset challenge, we propose a new large-scale simulation dataset named AM3D-Sim, generated by the co-simulation of AirSIM and CARLA, and a new real-world aerial dataset named AM3D-Real, collected by DJI Matrice 300 RTK, in both datasets, high-quality annotations for 3D object detection are provided. Extensive experiments show that i) aerial monocular 3D object detection is feasible; ii) the model pre-trained on the simulation dataset benefits real-world performance, and iii) DVDET also benefits monocular 3D object detection for cars. To encourage more researchers to investigate this area, we will release the dataset and related code in https://sjtu-magic.github.io/dataset/AM3D/.
PDF 8 pages, 8 figures
点此查看论文截图
Few-Shot Video Object Detection
Authors:Qi Fan, Chi-Keung Tang, Yu-Wing Tai
We introduce Few-Shot Video Object Detection (FSVOD) with three contributions to real-world visual learning challenge in our highly diverse and dynamic world: 1) a large-scale video dataset FSVOD-500 comprising of 500 classes with class-balanced videos in each category for few-shot learning; 2) a novel Tube Proposal Network (TPN) to generate high-quality video tube proposals for aggregating feature representation for the target video object which can be highly dynamic; 3) a strategically improved Temporal Matching Network (TMN+) for matching representative query tube features with better discriminative ability thus achieving higher diversity. Our TPN and TMN+ are jointly and end-to-end trained. Extensive experiments demonstrate that our method produces significantly better detection results on two few-shot video object detection datasets compared to image-based methods and other naive video-based extensions. Codes and datasets are released at \url{https://github.com/fanq15/FewX}.
PDF ECCV 2022
点此查看论文截图
Exploiting Shape Cues for Weakly Supervised Semantic Segmentation
Authors:Sungpil Kho, Pilhyeon Lee, Wonyoung Lee, Minsong Ki, Hyeran Byun
Weakly supervised semantic segmentation (WSSS) aims to produce pixel-wise class predictions with only image-level labels for training. To this end, previous methods adopt the common pipeline: they generate pseudo masks from class activation maps (CAMs) and use such masks to supervise segmentation networks. However, it is challenging to derive comprehensive pseudo masks that cover the whole extent of objects due to the local property of CAMs, i.e., they tend to focus solely on small discriminative object parts. In this paper, we associate the locality of CAMs with the texture-biased property of convolutional neural networks (CNNs). Accordingly, we propose to exploit shape information to supplement the texture-biased CNN features, thereby encouraging mask predictions to be not only comprehensive but also well-aligned with object boundaries. We further refine the predictions in an online fashion with a novel refinement method that takes into account both the class and the color affinities, in order to generate reliable pseudo masks to supervise the model. Importantly, our model is end-to-end trained within a single-stage framework and therefore efficient in terms of the training cost. Through extensive experiments on PASCAL VOC 2012, we validate the effectiveness of our method in producing precise and shape-aligned segmentation results. Specifically, our model surpasses the existing state-of-the-art single-stage approaches by large margins. What is more, it also achieves a new state-of-the-art performance over multi-stage approaches, when adopted in a simple two-stage pipeline without bells and whistles.
PDF Accepted by Pattern Recognition. The first two authors contributed equally