场景文本检测识别


2022-08-09 更新

Traditional Chinese Synthetic Datasets Verified with Labeled Data for Scene Text Recognition

Authors:Yi-Chang Chen, Yu-Chuan Chang, Yen-Cheng Chang, Yi-Ren Yeh

Scene text recognition (STR) has been widely studied in academia and industry. Training a text recognition model often requires a large amount of labeled data, but data labeling can be difficult, expensive, or time-consuming, especially for Traditional Chinese text recognition. To the best of our knowledge, public datasets for Traditional Chinese text recognition are lacking. This paper presents a framework for a Traditional Chinese synthetic data engine which aims to improve text recognition model performance. We generated over 20 million synthetic data and collected over 7,000 manually labeled data TC-STR 7k-word as the benchmark. Experimental results show that a text recognition model can achieve much better accuracy either by training from scratch with our generated synthetic data or by further fine-tuning with TC-STR 7k-word.
PDF Accepted in ICPR Workshop DLVDR 2022

点此查看论文截图

GLASS: Global to Local Attention for Scene-Text Spotting

Authors:Roi Ronen, Shahar Tsiper, Oron Anschel, Inbal Lavi, Amir Markovitz, R. Manmatha

In recent years, the dominant paradigm for text spotting is to combine the tasks of text detection and recognition into a single end-to-end framework. Under this paradigm, both tasks are accomplished by operating over a shared global feature map extracted from the input image. Among the main challenges that end-to-end approaches face is the performance degradation when recognizing text across scale variations (smaller or larger text), and arbitrary word rotation angles. In this work, we address these challenges by proposing a novel global-to-local attention mechanism for text spotting, termed GLASS, that fuses together global and local features. The global features are extracted from the shared backbone, preserving contextual information from the entire image, while the local features are computed individually on resized, high-resolution rotated word crops. The information extracted from the local crops alleviates much of the inherent difficulties with scale and word rotation. We show a performance analysis across scales and angles, highlighting improvement over scale and angle extremities. In addition, we introduce an orientation-aware loss term supervising the detection task, and show its contribution to both detection and recognition performance across all angles. Finally, we show that GLASS is general by incorporating it into other leading text spotting architectures, improving their text spotting performance. Our method achieves state-of-the-art results on multiple benchmarks, including the newly released TextOCR.
PDF 23 pages, 9 figures, ECCV’22

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录