场景文本检测识别


2022-08-05 更新

1st Place Solution to ECCV 2022 Challenge on Out of Vocabulary Scene Text Understanding: Cropped Word Recognition

Authors:Zhangzi Zhu, Yu Hao, Wenqing Zhang, Chuhui Xue, Song Bai

This report presents our winner solution to ECCV 2022 challenge on Out-of-Vocabulary Scene Text Understanding (OOV-ST) : Cropped Word Recognition. This challenge is held in the context of ECCV 2022 workshop on Text in Everything (TiE), which aims to extract out-of-vocabulary words from natural scene images. In the competition, we first pre-train SCATTER on the synthetic datasets, then fine-tune the model on the training set with data augmentations. Meanwhile, two additional models are trained specifically for long and vertical texts. Finally, we combine the output from different models with different layers, different backbones, and different seeds as the final results. Our solution achieves an overall word accuracy of 69.73% when considering both in-vocabulary and out-of-vocabulary words.
PDF 1st Place Solution to ECCV 2022 Challenge on Out of Vocabulary Scene Text Understanding: Cropped Word Recognition

点此查看论文截图

Vision-Language Pre-Training for Boosting Scene Text Detectors

Authors:Sibo Song, Jianqiang Wan, Zhibo Yang, Jun Tang, Wenqing Cheng, Xiang Bai, Cong Yao

Recently, vision-language joint representation learning has proven to be highly effective in various scenarios. In this paper, we specifically adapt vision-language joint learning for scene text detection, a task that intrinsically involves cross-modal interaction between the two modalities: vision and language, since text is the written form of language. Concretely, we propose to learn contextualized, joint representations through vision-language pre-training, for the sake of enhancing the performance of scene text detectors. Towards this end, we devise a pre-training architecture with an image encoder, a text encoder and a cross-modal encoder, as well as three pretext tasks: image-text contrastive learning (ITC), masked language modeling (MLM) and word-in-image prediction (WIP). The pre-trained model is able to produce more informative representations with richer semantics, which could readily benefit existing scene text detectors (such as EAST and PSENet) in the down-stream text detection task. Extensive experiments on standard benchmarks demonstrate that the proposed paradigm can significantly improve the performance of various representative text detectors, outperforming previous pre-training approaches. The code and pre-trained models will be publicly released.
PDF Accepted by CVPR 2022

点此查看论文截图

SGBANet: Semantic GAN and Balanced Attention Network for Arbitrarily Oriented Scene Text Recognition

Authors:Dajian Zhong, Shujing Lyu, Palaiahnakote Shivakumara, Bing Yin, Jiajia Wu, Umapada Pal, Yue Lu

Scene text recognition is a challenging task due to the complex backgrounds and diverse variations of text instances. In this paper, we propose a novel Semantic GAN and Balanced Attention Network (SGBANet) to recognize the texts in scene images. The proposed method first generates the simple semantic feature using Semantic GAN and then recognizes the scene text with the Balanced Attention Module. The Semantic GAN aims to align the semantic feature distribution between the support domain and target domain. Different from the conventional image-to-image translation methods that perform at the image level, the Semantic GAN performs the generation and discrimination on the semantic level with the Semantic Generator Module (SGM) and Semantic Discriminator Module (SDM). For target images (scene text images), the Semantic Generator Module generates simple semantic features that share the same feature distribution with support images (clear text images). The Semantic Discriminator Module is used to distinguish the semantic features between the support domain and target domain. In addition, a Balanced Attention Module is designed to alleviate the problem of attention drift. The Balanced Attention Module first learns a balancing parameter based on the visual glimpse vector and semantic glimpse vector, and then performs the balancing operation for obtaining a balanced glimpse vector. Experiments on six benchmarks, including regular datasets, i.e., IIIT5K, SVT, ICDAR2013, and irregular datasets, i.e., ICDAR2015, SVTP, CUTE80, validate the effectiveness of our proposed method.
PDF Accepted by ECCV 2022

点此查看论文截图

UNITS: Unsupervised Intermediate Training Stage for Scene Text Detection

Authors:Youhui Guo, Yu Zhou, Xugong Qin, Enze Xie, Weiping Wang

Recent scene text detection methods are almost based on deep learning and data-driven. Synthetic data is commonly adopted for pre-training due to expensive annotation cost. However, there are obvious domain discrepancies between synthetic data and real-world data. It may lead to sub-optimal performance to directly adopt the model initialized by synthetic data in the fine-tuning stage. In this paper, we propose a new training paradigm for scene text detection, which introduces an \textbf{UN}supervised \textbf{I}ntermediate \textbf{T}raining \textbf{S}tage (UNITS) that builds a buffer path to real-world data and can alleviate the gap between the pre-training stage and fine-tuning stage. Three training strategies are further explored to perceive information from real-world data in an unsupervised way. With UNITS, scene text detectors are improved without introducing any parameters and computations during inference. Extensive experimental results show consistent performance improvements on three public datasets.
PDF Accepted by ICME 2022

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录