无监督/半监督/对比学习


2022-08-02 更新

Few-shot Single-view 3D Reconstruction with Memory Prior Contrastive Network

Authors:Zhen Xing, Yijiang Chen, Zhixin Ling, Xiangdong Zhou, Yu Xiang

3D reconstruction of novel categories based on few-shot learning is appealing in real-world applications and attracts increasing research interests. Previous approaches mainly focus on how to design shape prior models for different categories. Their performance on unseen categories is not very competitive. In this paper, we present a Memory Prior Contrastive Network (MPCN) that can store shape prior knowledge in a few-shot learning based 3D reconstruction framework. With the shape memory, a multi-head attention module is proposed to capture different parts of a candidate shape prior and fuse these parts together to guide 3D reconstruction of novel categories. Besides, we introduce a 3D-aware contrastive learning method, which can not only complement the retrieval accuracy of memory network, but also better organize image features for downstream tasks. Compared with previous few-shot 3D reconstruction methods, MPCN can handle the inter-class variability without category annotations. Experimental results on a benchmark synthetic dataset and the Pascal3D+ real-world dataset show that our model outperforms the current state-of-the-art methods significantly.
PDF Accepted by ECCV 2022

点此查看论文截图

Improving Fine-tuning of Self-supervised Models with Contrastive Initialization

Authors:Haolin Pan, Yong Guo, Qinyi Deng, Haomin Yang, Yiqun Chen, Jian Chen

Self-supervised learning (SSL) has achieved remarkable performance in pretraining the models that can be further used in downstream tasks via fine-tuning. However, these self-supervised models may not capture meaningful semantic information since the images belonging to the same class are always regarded as negative pairs in the contrastive loss. Consequently, the images of the same class are often located far away from each other in learned feature space, which would inevitably hamper the fine-tuning process. To address this issue, we seek to provide a better initialization for the self-supervised models by enhancing the semantic information. To this end, we propose a Contrastive Initialization (COIN) method that breaks the standard fine-tuning pipeline by introducing an extra initialization stage before fine-tuning. Extensive experiments show that, with the enriched semantics, our COIN significantly outperforms existing methods without introducing extra training cost and sets new state-of-the-arts on multiple downstream tasks.
PDF 22 pages, 4 figures

点此查看论文截图

Decoupled Contrastive Learning

Authors:Chun-Hsiao Yeh, Cheng-Yao Hong, Yen-Chi Hsu, Tyng-Luh Liu, Yubei Chen, Yann LeCun

Contrastive learning (CL) is one of the most successful paradigms for self-supervised learning (SSL). In a principled way, it considers two augmented “views” of the same image as positive to be pulled closer, and all other images as negative to be pushed further apart. However, behind the impressive success of CL-based techniques, their formulation often relies on heavy-computation settings, including large sample batches, extensive training epochs, etc. We are thus motivated to tackle these issues and establish a simple, efficient, yet competitive baseline of contrastive learning. Specifically, we identify, from theoretical and empirical studies, a noticeable negative-positive-coupling (NPC) effect in the widely used InfoNCE loss, leading to unsuitable learning efficiency concerning the batch size. By removing the NPC effect, we propose decoupled contrastive learning (DCL) loss, which removes the positive term from the denominator and significantly improves the learning efficiency. DCL achieves competitive performance with less sensitivity to sub-optimal hyperparameters, requiring neither large batches in SimCLR, momentum encoding in MoCo, or large epochs. We demonstrate with various benchmarks while manifesting robustness as much less sensitive to suboptimal hyperparameters. Notably, SimCLR with DCL achieves 68.2% ImageNet-1K top-1 accuracy using batch size 256 within 200 epochs pre-training, outperforming its SimCLR baseline by 6.4%. Further, DCL can be combined with the SOTA contrastive learning method, NNCLR, to achieve 72.3% ImageNet-1K top-1 accuracy with 512 batch size in 400 epochs, which represents a new SOTA in contrastive learning. We believe DCL provides a valuable baseline for future contrastive SSL studies.
PDF Accepted by ECCV2022

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录