2022-08-01 更新
Neural Density-Distance Fields
Authors:Itsuki Ueda, Yoshihiro Fukuhara, Hirokatsu Kataoka, Hiroaki Aizawa, Hidehiko Shishido, Itaru Kitahara
The success of neural fields for 3D vision tasks is now indisputable. Following this trend, several methods aiming for visual localization (e.g., SLAM) have been proposed to estimate distance or density fields using neural fields. However, it is difficult to achieve high localization performance by only density fields-based methods such as Neural Radiance Field (NeRF) since they do not provide density gradient in most empty regions. On the other hand, distance field-based methods such as Neural Implicit Surface (NeuS) have limitations in objects’ surface shapes. This paper proposes Neural Density-Distance Field (NeDDF), a novel 3D representation that reciprocally constrains the distance and density fields. We extend distance field formulation to shapes with no explicit boundary surface, such as fur or smoke, which enable explicit conversion from distance field to density field. Consistent distance and density fields realized by explicit conversion enable both robustness to initial values and high-quality registration. Furthermore, the consistency between fields allows fast convergence from sparse point clouds. Experiments show that NeDDF can achieve high localization performance while providing comparable results to NeRF on novel view synthesis. The code is available at https://github.com/ueda0319/neddf.
PDF ECCV 2022 (poster). project page: https://ueda0319.github.io/neddf/
点此查看论文截图
End-to-end View Synthesis via NeRF Attention
Authors:Zelin Zhao, Jiaya Jia
In this paper, we present a simple seq2seq formulation for view synthesis where we take a set of ray points as input and output colors corresponding to the rays. Directly applying a standard transformer on this seq2seq formulation has two limitations. First, the standard attention cannot successfully fit the volumetric rendering procedure, and therefore high-frequency components are missing in the synthesized views. Second, applying global attention to all rays and pixels is extremely inefficient. Inspired by the neural radiance field (NeRF), we propose the NeRF attention (NeRFA) to address the above problems. On the one hand, NeRFA considers the volumetric rendering equation as a soft feature modulation procedure. In this way, the feature modulation enhances the transformers with the NeRF-like inductive bias. On the other hand, NeRFA performs multi-stage attention to reduce the computational overhead. Furthermore, the NeRFA model adopts the ray and pixel transformers to learn the interactions between rays and pixels. NeRFA demonstrates superior performance over NeRF and NerFormer on four datasets: DeepVoxels, Blender, LLFF, and CO3D. Besides, NeRFA establishes a new state-of-the-art under two settings: the single-scene view synthesis and the category-centric novel view synthesis. The code will be made publicly available.
PDF