2022-08-01 更新
WISE: Whitebox Image Stylization by Example-based Learning
Authors:Winfried Lötzsch, Max Reimann, Martin Büssemeyer, Amir Semmo, Jürgen Döllner, Matthias Trapp
Image-based artistic rendering can synthesize a variety of expressive styles using algorithmic image filtering. In contrast to deep learning-based methods, these heuristics-based filtering techniques can operate on high-resolution images, are interpretable, and can be parameterized according to various design aspects. However, adapting or extending these techniques to produce new styles is often a tedious and error-prone task that requires expert knowledge. We propose a new paradigm to alleviate this problem: implementing algorithmic image filtering techniques as differentiable operations that can learn parametrizations aligned to certain reference styles. To this end, we present WISE, an example-based image-processing system that can handle a multitude of stylization techniques, such as watercolor, oil or cartoon stylization, within a common framework. By training parameter prediction networks for global and local filter parameterizations, we can simultaneously adapt effects to reference styles and image content, e.g., to enhance facial features. Our method can be optimized in a style-transfer framework or learned in a generative-adversarial setting for image-to-image translation. We demonstrate that jointly training an XDoG filter and a CNN for postprocessing can achieve comparable results to a state-of-the-art GAN-based method.
PDF Accepted to ECCV
点此查看论文截图
StyleLight: HDR Panorama Generation for Lighting Estimation and Editing
Authors:Guangcong Wang, Yinuo Yang, Chen Change Loy, Ziwei Liu
We present a new lighting estimation and editing framework to generate high-dynamic-range (HDR) indoor panorama lighting from a single limited field-of-view (LFOV) image captured by low-dynamic-range (LDR) cameras. Existing lighting estimation methods either directly regress lighting representation parameters or decompose this problem into LFOV-to-panorama and LDR-to-HDR lighting generation sub-tasks. However, due to the partial observation, the high-dynamic-range lighting, and the intrinsic ambiguity of a scene, lighting estimation remains a challenging task. To tackle this problem, we propose a coupled dual-StyleGAN panorama synthesis network (StyleLight) that integrates LDR and HDR panorama synthesis into a unified framework. The LDR and HDR panorama synthesis share a similar generator but have separate discriminators. During inference, given an LDR LFOV image, we propose a focal-masked GAN inversion method to find its latent code by the LDR panorama synthesis branch and then synthesize the HDR panorama by the HDR panorama synthesis branch. StyleLight takes LFOV-to-panorama and LDR-to-HDR lighting generation into a unified framework and thus greatly improves lighting estimation. Extensive experiments demonstrate that our framework achieves superior performance over state-of-the-art methods on indoor lighting estimation. Notably, StyleLight also enables intuitive lighting editing on indoor HDR panoramas, which is suitable for real-world applications. Code is available at https://style-light.github.io.
PDF ECCV 2022, Project Page: https://style-light.github.io/ , Code: https://github.com/Wanggcong/StyleLight
点此查看论文截图
GLEAN: Generative Latent Bank for Image Super-Resolution and Beyond
Authors:Kelvin C. K. Chan, Xiangyu Xu, Xintao Wang, Jinwei Gu, Chen Change Loy
We show that pre-trained Generative Adversarial Networks (GANs) such as StyleGAN and BigGAN can be used as a latent bank to improve the performance of image super-resolution. While most existing perceptual-oriented approaches attempt to generate realistic outputs through learning with adversarial loss, our method, Generative LatEnt bANk (GLEAN), goes beyond existing practices by directly leveraging rich and diverse priors encapsulated in a pre-trained GAN. But unlike prevalent GAN inversion methods that require expensive image-specific optimization at runtime, our approach only needs a single forward pass for restoration. GLEAN can be easily incorporated in a simple encoder-bank-decoder architecture with multi-resolution skip connections. Employing priors from different generative models allows GLEAN to be applied to diverse categories (\eg~human faces, cats, buildings, and cars). We further present a lightweight version of GLEAN, named LightGLEAN, which retains only the critical components in GLEAN. Notably, LightGLEAN consists of only 21% of parameters and 35% of FLOPs while achieving comparable image quality. We extend our method to different tasks including image colorization and blind image restoration, and extensive experiments show that our proposed models perform favorably in comparison to existing methods. Codes and models are available at https://github.com/open-mmlab/mmediting.
PDF Accepted to TPAMI. Extension of our CVPR 2021 version: https://openaccess.thecvf.com/content/CVPR2021/html/Chan_GLEAN_Generative_Latent_Bank_for_Large-Factor_Image_Super-Resolution_CVPR_2021_paper.html?ref=https://githubhelp.com. arXiv admin note: text overlap with arXiv:2012.00739
点此查看论文截图
StudioGAN: A Taxonomy and Benchmark of GANs for Image Synthesis
Authors:Minguk Kang, Joonghyuk Shin, Jaesik Park
Generative Adversarial Network (GAN) is one of the state-of-the-art generative models for realistic image synthesis. While training and evaluating GAN becomes increasingly important, the current GAN research ecosystem does not provide reliable benchmarks for which the evaluation is conducted consistently and fairly. Furthermore, because there are few validated GAN implementations, researchers devote considerable time to reproducing baselines. We study the taxonomy of GAN approaches and present a new open-source library named StudioGAN. StudioGAN supports 7 GAN architectures, 9 conditioning methods, 4 adversarial losses, 13 regularization modules, 3 differentiable augmentations, 7 evaluation metrics, and 5 evaluation backbones. With our training and evaluation protocol, we present a large-scale benchmark using various datasets (CIFAR10, ImageNet, AFHQv2, FFHQ, and Baby/Papa/Granpa-ImageNet) and 3 different evaluation backbones (InceptionV3, SwAV, and Swin Transformer). Unlike other benchmarks used in the GAN community, we train representative GANs, including BigGAN, StyleGAN2, and StyleGAN3, in a unified training pipeline and quantify generation performance with 7 evaluation metrics. The benchmark evaluates other cutting-edge generative models(e.g., StyleGAN-XL, ADM, MaskGIT, and RQ-Transformer). StudioGAN provides GAN implementations, training, and evaluation scripts with the pre-trained weights. StudioGAN is available at https://github.com/POSTECH-CVLab/PyTorch-StudioGAN.
PDF 30 pages, Submitted to journal