NeRF


2022-07-30 更新

Seeing 3D Objects in a Single Image via Self-Supervised Static-Dynamic Disentanglement

Authors:Prafull Sharma, Ayush Tewari, Yilun Du, Sergey Zakharov, Rares Ambrus, Adrien Gaidon, William T. Freeman, Fredo Durand, Joshua B. Tenenbaum, Vincent Sitzmann

Human perception reliably identifies movable and immovable parts of 3D scenes, and completes the 3D structure of objects and background from incomplete observations. We learn this skill not via labeled examples, but simply by observing objects move. In this work, we propose an approach that observes unlabeled multi-view videos at training time and learns to map a single image observation of a complex scene, such as a street with cars, to a 3D neural scene representation that is disentangled into movable and immovable parts while plausibly completing its 3D structure. We separately parameterize movable and immovable scene parts via 2D neural ground plans. These ground plans are 2D grids of features aligned with the ground plane that can be locally decoded into 3D neural radiance fields. Our model is trained self-supervised via neural rendering. We demonstrate that the structure inherent to our disentangled 3D representation enables a variety of downstream tasks in street-scale 3D scenes using simple heuristics, such as extraction of object-centric 3D representations, novel view synthesis, instance segmentation, and 3D bounding box prediction, highlighting its value as a backbone for data-efficient 3D scene understanding models. This disentanglement further enables scene editing via object manipulation such as deletion, insertion, and rigid-body motion.
PDF Project page: https://prafullsharma.net/see3d/

点此查看论文截图

Deforming Radiance Fields with Cages

Authors:Tianhan Xu, Tatsuya Harada

Recent advances in radiance fields enable photorealistic rendering of static or dynamic 3D scenes, but still do not support explicit deformation that is used for scene manipulation or animation. In this paper, we propose a method that enables a new type of deformation of the radiance field: free-form radiance field deformation. We use a triangular mesh that encloses the foreground object called cage as an interface, and by manipulating the cage vertices, our approach enables the free-form deformation of the radiance field. The core of our approach is cage-based deformation which is commonly used in mesh deformation. We propose a novel formulation to extend it to the radiance field, which maps the position and the view direction of the sampling points from the deformed space to the canonical space, thus enabling the rendering of the deformed scene. The deformation results of the synthetic datasets and the real-world datasets demonstrate the effectiveness of our approach.
PDF ECCV 2022. Project page: https://xth430.github.io/deforming-nerf/

点此查看论文截图

Neural-Sim: Learning to Generate Training Data with NeRF

Authors:Yunhao Ge, Harkirat Behl, Jiashu Xu, Suriya Gunasekar, Neel Joshi, Yale Song, Xin Wang, Laurent Itti, Vibhav Vineet

Training computer vision models usually requires collecting and labeling vast amounts of imagery under a diverse set of scene configurations and properties. This process is incredibly time-consuming, and it is challenging to ensure that the captured data distribution maps well to the target domain of an application scenario. Recently, synthetic data has emerged as a way to address both of these issues. However, existing approaches either require human experts to manually tune each scene property or use automatic methods that provide little to no control; this requires rendering large amounts of random data variations, which is slow and is often suboptimal for the target domain. We present the first fully differentiable synthetic data pipeline that uses Neural Radiance Fields (NeRFs) in a closed-loop with a target application’s loss function. Our approach generates data on-demand, with no human labor, to maximize accuracy for a target task. We illustrate the effectiveness of our method on synthetic and real-world object detection tasks. We also introduce a new “YCB-in-the-Wild” dataset and benchmark that provides a test scenario for object detection with varied poses in real-world environments.
PDF ECCV 2022

点此查看论文截图

MPS-NeRF: Generalizable 3D Human Rendering from Multiview Images

Authors:Xiangjun Gao, Jiaolong Yang, Jongyoo Kim, Sida Peng, Zicheng Liu, Xin Tong

There has been rapid progress recently on 3D human rendering, including novel view synthesis and pose animation, based on the advances of neural radiance fields (NeRF). However, most existing methods focus on person-specific training and their training typically requires multi-view videos. This paper deals with a new challenging task — rendering novel views and novel poses for a person unseen in training, using only multiview images as input. For this task, we propose a simple yet effective method to train a generalizable NeRF with multiview images as conditional input. The key ingredient is a dedicated representation combining a canonical NeRF and a volume deformation scheme. Using a canonical space enables our method to learn shared properties of human and easily generalize to different people. Volume deformation is used to connect the canonical space with input and target images and query image features for radiance and density prediction. We leverage the parametric 3D human model fitted on the input images to derive the deformation, which works quite well in practice when combined with our canonical NeRF. The experiments on both real and synthetic data with the novel view synthesis and pose animation tasks collectively demonstrate the efficacy of our method.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录