2022-07-30 更新
TAFIM: Targeted Adversarial Attacks against Facial Image Manipulations
Authors:Shivangi Aneja, Lev Markhasin, Matthias Niessner
Face manipulation methods can be misused to affect an individual’s privacy or to spread disinformation. To this end, we introduce a novel data-driven approach that produces image-specific perturbations which are embedded in the original images. The key idea is that these protected images prevent face manipulation by causing the manipulation model to produce a predefined manipulation target (uniformly colored output image in our case) instead of the actual manipulation. In addition, we propose to leverage differentiable compression approximation, hence making generated perturbations robust to common image compression. In order to prevent against multiple manipulation methods simultaneously, we further propose a novel attention-based fusion of manipulation-specific perturbations. Compared to traditional adversarial attacks that optimize noise patterns for each image individually, our generalized model only needs a single forward pass, thus running orders of magnitude faster and allowing for easy integration in image processing stacks, even on resource-constrained devices like smartphones.
PDF (ECCV 2022 Paper) Video: https://youtu.be/11VMOJI7tKg Project Page: https://shivangi-aneja.github.io/projects/tafim/
点此查看论文截图
Point Cloud Attacks in Graph Spectral Domain: When 3D Geometry Meets Graph Signal Processing
Authors:Daizong Liu, Wei Hu, Xin Li
With the increasing attention in various 3D safety-critical applications, point cloud learning models have been shown to be vulnerable to adversarial attacks. Although existing 3D attack methods achieve high success rates, they delve into the data space with point-wise perturbation, which may neglect the geometric characteristics. Instead, we propose point cloud attacks from a new perspective — the graph spectral domain attack, aiming to perturb graph transform coefficients in the spectral domain that corresponds to varying certain geometric structure. Specifically, leveraging on graph signal processing, we first adaptively transform the coordinates of points onto the spectral domain via graph Fourier transform (GFT) for compact representation. Then, we analyze the influence of different spectral bands on the geometric structure, based on which we propose to perturb the GFT coefficients via a learnable graph spectral filter. Considering the low-frequency components mainly contribute to the rough shape of the 3D object, we further introduce a low-frequency constraint to limit perturbations within imperceptible high-frequency components. Finally, the adversarial point cloud is generated by transforming the perturbed spectral representation back to the data domain via the inverse GFT. Experimental results demonstrate the effectiveness of the proposed attack in terms of both the imperceptibility and attack success rates.
PDF arXiv admin note: substantial text overlap with arXiv:2202.07261
点此查看论文截图
Improved and Interpretable Defense to Transferred Adversarial Examples by Jacobian Norm with Selective Input Gradient Regularization
Authors:Deyin Liu, Lin Wu, Farid Boussaid, Mohammed Bennamoun
Deep neural networks (DNNs) are known to be vulnerable to adversarial examples that are crafted with imperceptible perturbations, i.e., a small change in an input image can induce a mis-classification, and thus threatens the reliability of deep learning based deployment systems. Adversarial training (AT) is often adopted to improve the robustness of DNNs through training a mixture of corrupted and clean data. However, most of AT based methods are ineffective in dealing with \textit{transferred adversarial examples} which are generated to fool a wide spectrum of defense models, and thus cannot satisfy the generalization requirement raised in real-world scenarios. Moreover, adversarially training a defense model in general cannot produce interpretable predictions towards the inputs with perturbations, whilst a highly interpretable robust model is required by different domain experts to understand the behaviour of a DNN. In this work, we propose an approach based on Jacobian norm and Selective Input Gradient Regularization (J-SIGR), which suggests the linearized robustness through Jacobian normalization and also regularizes the perturbation-based saliency maps to imitate the model’s interpretable predictions. As such, we achieve both the improved defense and high interpretability of DNNs. Finally, we evaluate our method across different architectures against powerful adversarial attacks. Experiments demonstrate that the proposed J-SIGR confers improved robustness against transferred adversarial attacks, and we also show that the predictions from the neural network are easy to interpret.
PDF Under review
点此查看论文截图
Making Corgis Important for Honeycomb Classification: Adversarial Attacks on Concept-based Explainability Tools
Authors:Davis Brown, Henry Kvinge
Methods for model explainability have become increasingly critical for testing the fairness and soundness of deep learning. Concept-based interpretability techniques, which use a small set of human-interpretable concept exemplars in order to measure the influence of a concept on a model’s internal representation of input, are an important thread in this line of research. In this work we show that these explainability methods can suffer the same vulnerability to adversarial attacks as the models they are meant to analyze. We demonstrate this phenomenon on two well-known concept-based interpretability methods: TCAV and faceted feature visualization. We show that by carefully perturbing the examples of the concept that is being investigated, we can radically change the output of the interpretability method. The attacks that we propose can either induce positive interpretations (polka dots are an important concept for a model when classifying zebras) or negative interpretations (stripes are not an important factor in identifying images of a zebra). Our work highlights the fact that in safety-critical applications, there is need for security around not only the machine learning pipeline but also the model interpretation process.
PDF AdvML Frontiers 2022 @ ICML 2022 workshop