2022-07-29 更新
A Guide to Image and Video based Small Object Detection using Deep Learning : Case Study of Maritime Surveillance
Authors:Aref Miri Rekavandi, Lian Xu, Farid Boussaid, Abd-Krim Seghouane, Stephen Hoefs, Mohammed Bennamoun
Small object detection (SOD) in optical images and videos is a challenging problem that even state-of-the-art generic object detection methods fail to accurately localize and identify such objects. Typically, small objects appear in real-world due to large camera-object distance. Because small objects occupy only a small area in the input image (e.g., less than 10%), the information extracted from such a small area is not always rich enough to support decision making. Multidisciplinary strategies are being developed by researchers working at the interface of deep learning and computer vision to enhance the performance of SOD deep learning based methods. In this paper, we provide a comprehensive review of over 160 research papers published between 2017 and 2022 in order to survey this growing subject. This paper summarizes the existing literature and provide a taxonomy that illustrates the broad picture of current research. We investigate how to improve the performance of small object detection in maritime environments, where increasing performance is critical. By establishing a connection between generic and maritime SOD research, future directions have been identified. In addition, the popular datasets that have been used for SOD for generic and maritime applications are discussed, and also well-known evaluation metrics for the state-of-the-art methods on some of the datasets are provided.
PDF
点此查看论文截图
HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation
Authors:Lukas Hoyer, Dengxin Dai, Luc Van Gool
Unsupervised domain adaptation (UDA) aims to adapt a model trained on the source domain (e.g. synthetic data) to the target domain (e.g. real-world data) without requiring further annotations on the target domain. This work focuses on UDA for semantic segmentation as real-world pixel-wise annotations are particularly expensive to acquire. As UDA methods for semantic segmentation are usually GPU memory intensive, most previous methods operate only on downscaled images. We question this design as low-resolution predictions often fail to preserve fine details. The alternative of training with random crops of high-resolution images alleviates this problem but falls short in capturing long-range, domain-robust context information. Therefore, we propose HRDA, a multi-resolution training approach for UDA, that combines the strengths of small high-resolution crops to preserve fine segmentation details and large low-resolution crops to capture long-range context dependencies with a learned scale attention, while maintaining a manageable GPU memory footprint. HRDA enables adapting small objects and preserving fine segmentation details. It significantly improves the state-of-the-art performance by 5.5 mIoU for GTA-to-Cityscapes and 4.9 mIoU for Synthia-to-Cityscapes, resulting in unprecedented 73.8 and 65.8 mIoU, respectively. The implementation is available at https://github.com/lhoyer/HRDA.
PDF ECCV 2022
点此查看论文截图
GPS-GLASS: Learning Nighttime Semantic Segmentation Using Daytime Video and GPS data
Authors:Hongjae Lee, Changwoo Han, Seung-Won Jung
Semantic segmentation for autonomous driving should be robust against various in-the-wild environments. Nighttime semantic segmentation is especially challenging due to a lack of annotated nighttime images and a large domain gap from daytime images with sufficient annotation. In this paper, we propose a novel GPS-based training framework for nighttime semantic segmentation. Given GPS-aligned pairs of daytime and nighttime images, we perform cross-domain correspondence matching to obtain pixel-level pseudo supervision. Moreover, we conduct flow estimation between daytime video frames and apply GPS-based scaling to acquire another pixel-level pseudo supervision. Using these pseudo supervisions with a confidence map, we train a nighttime semantic segmentation network without any annotation from nighttime images. Experimental results demonstrate the effectiveness of the proposed method on several nighttime semantic segmentation datasets. Our source code is available at https://github.com/jimmy9704/GPS-GLASS.
PDF submitted to IEEE Transactions on Multimedia
点此查看论文截图
Incremental Few-Shot Semantic Segmentation via Embedding Adaptive-Update and Hyper-class Representation
Authors:Guangchen Shi, Yirui Wu, Jun Liu, Shaohua Wan, Wenhai Wang, Tong Lu
Incremental few-shot semantic segmentation (IFSS) targets at incrementally expanding model’s capacity to segment new class of images supervised by only a few samples. However, features learned on old classes could significantly drift, causing catastrophic forgetting. Moreover, few samples for pixel-level segmentation on new classes lead to notorious overfitting issues in each learning session. In this paper, we explicitly represent class-based knowledge for semantic segmentation as a category embedding and a hyper-class embedding, where the former describes exclusive semantical properties, and the latter expresses hyper-class knowledge as class-shared semantic properties. Aiming to solve IFSS problems, we present EHNet, i.e., Embedding adaptive-update and Hyper-class representation Network from two aspects. First, we propose an embedding adaptive-update strategy to avoid feature drift, which maintains old knowledge by hyper-class representation, and adaptively update category embeddings with a class-attention scheme to involve new classes learned in individual sessions. Second, to resist overfitting issues caused by few training samples, a hyper-class embedding is learned by clustering all category embeddings for initialization and aligned with category embedding of the new class for enhancement, where learned knowledge assists to learn new knowledge, thus alleviating performance dependence on training data scale. Significantly, these two designs provide representation capability for classes with sufficient semantics and limited biases, enabling to perform segmentation tasks requiring high semantic dependence. Experiments on PASCAL-5i and COCO datasets show that EHNet achieves new state-of-the-art performance with remarkable advantages.
PDF
点此查看论文截图
Weakly-Supervised Camouflaged Object Detection with Scribble Annotations
Authors:Ruozhen He, Qihua Dong, Jiaying Lin, Rynson W. H. Lau
Existing camouflaged object detection (COD) methods rely heavily on large-scale datasets with pixel-wise annotations. However, due to the ambiguous boundary, it is very time-consuming and labor-intensive to annotate camouflage objects pixel-wisely (which takes ~ 60 minutes per image). In this paper, we propose the first weakly-supervised camouflaged object detection (COD) method, using scribble annotations as supervision. To achieve this, we first construct a scribble-based camouflaged object dataset with 4,040 images and corresponding scribble annotations. It is worth noting that annotating the scribbles used in our dataset takes only ~ 10 seconds per image, which is 360 times faster than per-pixel annotations. However, the network directly using scribble annotations for supervision will fail to localize the boundary of camouflaged objects and tend to have inconsistent predictions since scribble annotations only describe the primary structure of objects without details. To tackle this problem, we propose a novel consistency loss composed of two parts: a reliable cross-view loss to attain reliable consistency over different images, and a soft inside-view loss to maintain consistency inside a single prediction map. Besides, we observe that humans use semantic information to segment regions near boundaries of camouflaged objects. Therefore, we design a feature-guided loss, which includes visual features directly extracted from images and semantically significant features captured by models. Moreover, we propose a novel network that detects camouflaged objects by scribble learning on structural information and semantic relations. Experimental results show that our model outperforms relevant state-of-the-art methods on three COD benchmarks with an average improvement of 11.0% on MAE, 3.2% on S-measure, 2.5% on E-measure and 4.4% on weighted F-measure.
PDF
点此查看论文截图
TACS: Taxonomy Adaptive Cross-Domain Semantic Segmentation
Authors:Rui Gong, Martin Danelljan, Dengxin Dai, Danda Pani Paudel, Ajad Chhatkuli, Fisher Yu, Luc Van Gool
Traditional domain adaptive semantic segmentation addresses the task of adapting a model to a novel target domain under limited or no additional supervision. While tackling the input domain gap, the standard domain adaptation settings assume no domain change in the output space. In semantic prediction tasks, different datasets are often labeled according to different semantic taxonomies. In many real-world settings, the target domain task requires a different taxonomy than the one imposed by the source domain. We therefore introduce the more general taxonomy adaptive cross-domain semantic segmentation (TACS) problem, allowing for inconsistent taxonomies between the two domains. We further propose an approach that jointly addresses the image-level and label-level domain adaptation. On the label-level, we employ a bilateral mixed sampling strategy to augment the target domain, and a relabelling method to unify and align the label spaces. We address the image-level domain gap by proposing an uncertainty-rectified contrastive learning method, leading to more domain-invariant and class-discriminative features. We extensively evaluate the effectiveness of our framework under different TACS settings: open taxonomy, coarse-to-fine taxonomy, and implicitly-overlapping taxonomy. Our approach outperforms the previous state-of-the-art by a large margin, while being capable of adapting to target taxonomies. Our implementation is publicly available at https://github.com/ETHRuiGong/TADA.
PDF Accepted by ECCV 2022
点此查看论文截图
CENet: Toward Concise and Efficient LiDAR Semantic Segmentation for Autonomous Driving
Authors:Hui-Xian Cheng, Xian-Feng Han, Guo-Qiang Xiao
Accurate and fast scene understanding is one of the challenging task for autonomous driving, which requires to take full advantage of LiDAR point clouds for semantic segmentation. In this paper, we present a \textbf{concise} and \textbf{efficient} image-based semantic segmentation network, named \textbf{CENet}. In order to improve the descriptive power of learned features and reduce the computational as well as time complexity, our CENet integrates the convolution with larger kernel size instead of MLP, carefully-selected activation functions, and multiple auxiliary segmentation heads with corresponding loss functions into architecture. Quantitative and qualitative experiments conducted on publicly available benchmarks, SemanticKITTI and SemanticPOSS, demonstrate that our pipeline achieves much better mIoU and inference performance compared with state-of-the-art models. The code will be available at https://github.com/huixiancheng/CENet.
PDF Accepted by ICME 2022
点此查看论文截图
Behind Every Domain There is a Shift: Adapting Distortion-aware Vision Transformers for Panoramic Semantic Segmentation
Authors:Jiaming Zhang, Kailun Yang, Hao Shi, Simon Reiß, Kunyu Peng, Chaoxiang Ma, Haodong Fu, Kaiwei Wang, Rainer Stiefelhagen
In this paper, we address panoramic semantic segmentation, which provides a full-view and dense-pixel understanding of surroundings in a holistic way. Panoramic segmentation is under-explored due to two critical challenges: (1) image distortions and object deformations on panoramas; (2) lack of annotations for training panoramic segmenters. To tackle these problems, we propose a Transformer for Panoramic Semantic Segmentation (Trans4PASS) architecture. First, to enhance distortion awareness, Trans4PASS, equipped with Deformable Patch Embedding (DPE) and Deformable MLP (DMLP) modules, is capable of handling object deformations and image distortions whenever (before or after adaptation) and wherever (shallow or deep levels) by design. We further introduce the upgraded Trans4PASS+ model, featuring DMLPv2 with parallel token mixing to improve the flexibility and generalizability in modeling discriminative cues. Second, we propose a Mutual Prototypical Adaptation (MPA) strategy for unsupervised domain adaptation. Third, aside from Pinhole-to-Panoramic (Pin2Pan) adaptation, we create a new dataset (SynPASS) with 9,080 panoramic images to explore a Synthetic-to-Real (Syn2Real) adaptation scheme in 360{\deg} imagery. Extensive experiments are conducted, which cover indoor and outdoor scenarios, and each of them is investigated with Pin2Pan and Syn2Real regimens. Trans4PASS+ achieves state-of-the-art performances on four domain adaptive panoramic semantic segmentation benchmarks. Code is available at https://github.com/jamycheung/Trans4PASS.
PDF Extended version of CVPR 2022 paper arXiv:2203.01452. Code is available at https://github.com/jamycheung/Trans4PASS
点此查看论文截图
Multimodal Object Detection via Probabilistic Ensembling
Authors:Yi-Ting Chen, Jinghao Shi, Zelin Ye, Christoph Mertz, Deva Ramanan, Shu Kong
Object detection with multimodal inputs can improve many safety-critical systems such as autonomous vehicles (AVs). Motivated by AVs that operate in both day and night, we study multimodal object detection with RGB and thermal cameras, since the latter provides much stronger object signatures under poor illumination. We explore strategies for fusing information from different modalities. Our key contribution is a probabilistic ensembling technique, ProbEn, a simple non-learned method that fuses together detections from multi-modalities. We derive ProbEn from Bayes’ rule and first principles that assume conditional independence across modalities. Through probabilistic marginalization, ProbEn elegantly handles missing modalities when detectors do not fire on the same object. Importantly, ProbEn also notably improves multimodal detection even when the conditional independence assumption does not hold, e.g., fusing outputs from other fusion methods (both off-the-shelf and trained in-house). We validate ProbEn on two benchmarks containing both aligned (KAIST) and unaligned (FLIR) multimodal images, showing that ProbEn outperforms prior work by more than 13% in relative performance!
PDF camera-ready with supplement for ECCV2022 (oral presentation); open-source code at https://github.com/Jamie725/RGBT-detection
点此查看论文截图
Towards Large-Scale Small Object Detection: Survey and Benchmarks
Authors:Gong Cheng, Xiang Yuan, Xiwen Yao, Kebing Yan, Qinghua Zeng, Junwei Han
With the rise of deep convolutional neural networks, object detection has achieved prominent advances in past years. However, such prosperity could not camouflage the unsatisfactory situation of Small Object Detection (SOD), one of the notoriously challenging tasks in computer vision, owing to the poor visual appearance and noisy representation caused by the intrinsic structure of small targets. In addition, large-scale dataset for benchmarking small object detection methods remains a bottleneck. In this paper, we first conduct a thorough review of small object detection. Then, to catalyze the development of SOD, we construct two large-scale Small Object Detection dAtasets (SODA), SODA-D and SODA-A, which focus on the Driving and Aerial scenarios respectively. SODA-D includes 24704 high-quality traffic images and 277596 instances of 9 categories. For SODA-A, we harvest 2510 high-resolution aerial images and annotate 800203 instances over 9 classes. The proposed datasets, as we know, are the first-ever attempt to large-scale benchmarks with a vast collection of exhaustively annotated instances tailored for multi-category SOD. Finally, we evaluate the performance of mainstream methods on SODA. We expect the released benchmarks could facilitate the development of SOD and spawn more breakthroughs in this field. Datasets and codes will be available soon at: \url{https://shaunyuan22.github.io/SODA}.
PDF 12 pages, 12 figures
点此查看论文截图
Why Accuracy Is Not Enough: The Need for Consistency in Object Detection
Authors:Caleb Tung, Abhinav Goel, Fischer Bordwell, Nick Eliopoulos, Xiao Hu, George K. Thiruvathukal, Yung-Hsiang Lu
Object detectors are vital to many modern computer vision applications. However, even state-of-the-art object detectors are not perfect. On two images that look similar to human eyes, the same detector can make different predictions because of small image distortions like camera sensor noise and lighting changes. This problem is called inconsistency. Existing accuracy metrics do not properly account for inconsistency, and similar work in this area only targets improvements on artificial image distortions. Therefore, we propose a method to use non-artificial video frames to measure object detection consistency over time, across frames. Using this method, we show that the consistency of modern object detectors ranges from 83.2% to 97.1% on different video datasets from the Multiple Object Tracking Challenge. We conclude by showing that applying image distortion corrections like .WEBP Image Compression and Unsharp Masking can improve consistency by as much as 5.1%, with no loss in accuracy.
PDF
点此查看论文截图
Monocular 3D Object Detection with Depth from Motion
Authors:Tai Wang, Jiangmiao Pang, Dahua Lin
Perceiving 3D objects from monocular inputs is crucial for robotic systems, given its economy compared to multi-sensor settings. It is notably difficult as a single image can not provide any clues for predicting absolute depth values. Motivated by binocular methods for 3D object detection, we take advantage of the strong geometry structure provided by camera ego-motion for accurate object depth estimation and detection. We first make a theoretical analysis on this general two-view case and notice two challenges: 1) Cumulative errors from multiple estimations that make the direct prediction intractable; 2) Inherent dilemmas caused by static cameras and matching ambiguity. Accordingly, we establish the stereo correspondence with a geometry-aware cost volume as the alternative for depth estimation and further compensate it with monocular understanding to address the second problem. Our framework, named Depth from Motion (DfM), then uses the established geometry to lift 2D image features to the 3D space and detects 3D objects thereon. We also present a pose-free DfM to make it usable when the camera pose is unavailable. Our framework outperforms state-of-the-art methods by a large margin on the KITTI benchmark. Detailed quantitative and qualitative analyses also validate our theoretical conclusions. The code will be released at https://github.com/Tai-Wang/Depth-from-Motion.
PDF ECCV 2022 Oral
点此查看论文截图
Few-shot Object Counting and Detection
Authors:Thanh Nguyen, Chau Pham, Khoi Nguyen, Minh Hoai
We tackle a new task of few-shot object counting and detection. Given a few exemplar bounding boxes of a target object class, we seek to count and detect all objects of the target class. This task shares the same supervision as the few-shot object counting but additionally outputs the object bounding boxes along with the total object count. To address this challenging problem, we introduce a novel two-stage training strategy and a novel uncertainty-aware few-shot object detector: Counting-DETR. The former is aimed at generating pseudo ground-truth bounding boxes to train the latter. The latter leverages the pseudo ground-truth provided by the former but takes the necessary steps to account for the imperfection of pseudo ground-truth. To validate the performance of our method on the new task, we introduce two new datasets named FSCD-147 and FSCD-LVIS. Both datasets contain images with complex scenes, multiple object classes per image, and a huge variation in object shapes, sizes, and appearance. Our proposed approach outperforms very strong baselines adapted from few-shot object counting and few-shot object detection with a large margin in both counting and detection metrics. The code and models are available at https://github.com/VinAIResearch/Counting-DETR.
PDF Accepted to ECCV 2022; The first two authors contribute equally
点此查看论文截图
Localized Vision-Language Matching for Open-vocabulary Object Detection
Authors:Maria A. Bravo, Sudhanshu Mittal, Thomas Brox
In this work, we propose an open-vocabulary object detection method that, based on image-caption pairs, learns to detect novel object classes along with a given set of known classes. It is a two-stage training approach that first uses a location-guided image-caption matching technique to learn class labels for both novel and known classes in a weakly-supervised manner and second specializes the model for the object detection task using known class annotations. We show that a simple language model fits better than a large contextualized language model for detecting novel objects. Moreover, we introduce a consistency-regularization technique to better exploit image-caption pair information. Our method compares favorably to existing open-vocabulary detection approaches while being data-efficient. Source code is available at https://github.com/lmb-freiburg/locov .
PDF Accepted at DAGM German Conference on Pattern Recognition (GCPR 2022)
点此查看论文截图
Two-Stream UNET Networks for Semantic Segmentation in Medical Images
Authors:Xin Chen, Ke Ding
Recent advances of semantic image segmentation greatly benefit from deeper and larger Convolutional Neural Network (CNN) models. Compared to image segmentation in the wild, properties of both medical images themselves and of existing medical datasets hinder training deeper and larger models because of overfitting. To this end, we propose a novel two-stream UNET architecture for automatic end-to-end medical image segmentation, in which intensity value and gradient vector flow (GVF) are two inputs for each stream, respectively. We demonstrate that two-stream CNNs with more low-level features greatly benefit semantic segmentation for imperfect medical image datasets. Our proposed two-stream networks are trained and evaluated on the popular medical image segmentation benchmarks, and the results are competitive with the state of the art. The code will be released soon.
PDF