2022-07-26 更新
PS-NeRF: Neural Inverse Rendering for Multi-view Photometric Stereo
Authors:Wenqi Yang, Guanying Chen, Chaofeng Chen, Zhenfang Chen, Kwan-Yee K. Wong
Traditional multi-view photometric stereo (MVPS) methods are often composed of multiple disjoint stages, resulting in noticeable accumulated errors. In this paper, we present a neural inverse rendering method for MVPS based on implicit representation. Given multi-view images of a non-Lambertian object illuminated by multiple unknown directional lights, our method jointly estimates the geometry, materials, and lights. Our method first employs multi-light images to estimate per-view surface normal maps, which are used to regularize the normals derived from the neural radiance field. It then jointly optimizes the surface normals, spatially-varying BRDFs, and lights based on a shadow-aware differentiable rendering layer. After optimization, the reconstructed object can be used for novel-view rendering, relighting, and material editing. Experiments on both synthetic and real datasets demonstrate that our method achieves far more accurate shape reconstruction than existing MVPS and neural rendering methods. Our code and model can be found at https://ywq.github.io/psnerf.
PDF ECCV 2022, Project page: https://ywq.github.io/psnerf
点此查看论文截图
R2L: Distilling Neural Radiance Field to Neural Light Field for Efficient Novel View Synthesis
Authors:Huan Wang, Jian Ren, Zeng Huang, Kyle Olszewski, Menglei Chai, Yun Fu, Sergey Tulyakov
Recent research explosion on Neural Radiance Field (NeRF) shows the encouraging potential to represent complex scenes with neural networks. One major drawback of NeRF is its prohibitive inference time: Rendering a single pixel requires querying the NeRF network hundreds of times. To resolve it, existing efforts mainly attempt to reduce the number of required sampled points. However, the problem of iterative sampling still exists. On the other hand, Neural Light Field (NeLF) presents a more straightforward representation over NeRF in novel view synthesis — the rendering of a pixel amounts to one single forward pass without ray-marching. In this work, we present a deep residual MLP network (88 layers) to effectively learn the light field. We show the key to successfully learning such a deep NeLF network is to have sufficient data, for which we transfer the knowledge from a pre-trained NeRF model via data distillation. Extensive experiments on both synthetic and real-world scenes show the merits of our method over other counterpart algorithms. On the synthetic scenes, we achieve 26-35x FLOPs reduction (per camera ray) and 28-31x runtime speedup, meanwhile delivering significantly better (1.4-2.8 dB average PSNR improvement) rendering quality than NeRF without any customized parallelism requirement.
PDF Accepted by ECCV 2022. Code: https://github.com/snap-research/R2L
点此查看论文截图
Learning Dynamic Facial Radiance Fields for Few-Shot Talking Head Synthesis
Authors:Shuai Shen, Wanhua Li, Zheng Zhu, Yueqi Duan, Jie Zhou, Jiwen Lu
Talking head synthesis is an emerging technology with wide applications in film dubbing, virtual avatars and online education. Recent NeRF-based methods generate more natural talking videos, as they better capture the 3D structural information of faces. However, a specific model needs to be trained for each identity with a large dataset. In this paper, we propose Dynamic Facial Radiance Fields (DFRF) for few-shot talking head synthesis, which can rapidly generalize to an unseen identity with few training data. Different from the existing NeRF-based methods which directly encode the 3D geometry and appearance of a specific person into the network, our DFRF conditions face radiance field on 2D appearance images to learn the face prior. Thus the facial radiance field can be flexibly adjusted to the new identity with few reference images. Additionally, for better modeling of the facial deformations, we propose a differentiable face warping module conditioned on audio signals to deform all reference images to the query space. Extensive experiments show that with only tens of seconds of training clip available, our proposed DFRF can synthesize natural and high-quality audio-driven talking head videos for novel identities with only 40k iterations. We highly recommend readers view our supplementary video for intuitive comparisons. Code is available in https://sstzal.github.io/DFRF/.
PDF Accepted by ECCV 2022. Project page: https://sstzal.github.io/DFRF/
点此查看论文截图
Multimodal Image Synthesis and Editing: A Survey
Authors:Fangneng Zhan, Yingchen Yu, Rongliang Wu, Jiahui Zhang, Shijian Lu, Lingjie Liu, Adam Kortylewski, Christian Theobalt, Eric Xing
As information exists in various modalities in real world, effective interaction and fusion among multimodal information plays a key role for the creation and perception of multimodal data in computer vision and deep learning research. With superb power in modelling the interaction among multimodal information, multimodal image synthesis and editing has become a hot research topic in recent years. Instead of providing explicit guidance for network training, multimodal guidance offers intuitive and flexible means for image synthesis and editing. On the other hand, this field is also facing several challenges in alignment of features with inherent modality gaps, synthesis of high-resolution images, faithful evaluation metrics, etc. In this survey, we comprehensively contextualize the advance of the recent multimodal image synthesis and editing and formulate taxonomies according to data modality and model architectures. We start with an introduction to different types of guidance modalities in image synthesis and editing. We then describe multimodal image synthesis and editing approaches extensively with detailed frameworks including Generative Adversarial Networks (GANs), Auto-regressive models, Diffusion models, Neural Radiance Fields (NeRF) and other methods. This is followed by a comprehensive description of benchmark datasets and corresponding evaluation metrics as widely adopted in multimodal image synthesis and editing, as well as detailed comparisons of various synthesis methods with analysis of respective advantages and limitations. Finally, we provide insights about the current research challenges and possible directions for future research. We hope this survey could lay a sound and valuable foundation for future development of multimodal image synthesis and editing. A project associated with this survey is available at https://github.com/fnzhan/MISE.
PDF Under submission of TPAMI
点此查看论文截图
BungeeNeRF: Progressive Neural Radiance Field for Extreme Multi-scale Scene Rendering
Authors:Yuanbo Xiangli, Linning Xu, Xingang Pan, Nanxuan Zhao, Anyi Rao, Christian Theobalt, Bo Dai, Dahua Lin
Neural radiance fields (NeRF) has achieved outstanding performance in modeling 3D objects and controlled scenes, usually under a single scale. In this work, we focus on multi-scale cases where large changes in imagery are observed at drastically different scales. This scenario vastly exists in real-world 3D environments, such as city scenes, with views ranging from satellite level that captures the overview of a city, to ground level imagery showing complex details of an architecture; and can also be commonly identified in landscape and delicate minecraft 3D models. The wide span of viewing positions within these scenes yields multi-scale renderings with very different levels of detail, which poses great challenges to neural radiance field and biases it towards compromised results. To address these issues, we introduce BungeeNeRF, a progressive neural radiance field that achieves level-of-detail rendering across drastically varied scales. Starting from fitting distant views with a shallow base block, as training progresses, new blocks are appended to accommodate the emerging details in the increasingly closer views. The strategy progressively activates high-frequency channels in NeRF’s positional encoding inputs and successively unfolds more complex details as the training proceeds. We demonstrate the superiority of BungeeNeRF in modeling diverse multi-scale scenes with drastically varying views on multiple data sources (city models, synthetic, and drone captured data) and its support for high-quality rendering in different levels of detail.
PDF Accepted to ECCV22; Previous version: CityNeRF: Building NeRF at City Scale; Project page can be found in https://city-super.github.io/citynerf
点此查看论文截图
Learning Generalizable Light Field Networks from Few Images
Authors:Qian Li, Franck Multon, Adnane Boukhayma
We explore a new strategy for few-shot novel view synthesis based on a neural light field representation. Given a target camera pose, an implicit neural network maps each ray to its target pixel’s color directly. The network is conditioned on local ray features generated by coarse volumetric rendering from an explicit 3D feature volume. This volume is built from the input images using a 3D ConvNet. Our method achieves competitive performances on synthetic and real MVS data with respect to state-of-the-art neural radiance field based competition, while offering a 100 times faster rendering.
PDF