2022-07-26 更新
Few-Shot Object Detection by Knowledge Distillation Using Bag-of-Visual-Words Representations
Authors:Wenjie Pei, Shuang Wu, Dianwen Mei, Fanglin Chen, Jiandong Tian, Guangming Lu
While fine-tuning based methods for few-shot object detection have achieved remarkable progress, a crucial challenge that has not been addressed well is the potential class-specific overfitting on base classes and sample-specific overfitting on novel classes. In this work we design a novel knowledge distillation framework to guide the learning of the object detector and thereby restrain the overfitting in both the pre-training stage on base classes and fine-tuning stage on novel classes. To be specific, we first present a novel Position-Aware Bag-of-Visual-Words model for learning a representative bag of visual words (BoVW) from a limited size of image set, which is used to encode general images based on the similarities between the learned visual words and an image. Then we perform knowledge distillation based on the fact that an image should have consistent BoVW representations in two different feature spaces. To this end, we pre-learn a feature space independently from the object detection, and encode images using BoVW in this space. The obtained BoVW representation for an image can be considered as distilled knowledge to guide the learning of object detector: the extracted features by the object detector for the same image are expected to derive the consistent BoVW representations with the distilled knowledge. Extensive experiments validate the effectiveness of our method and demonstrate the superiority over other state-of-the-art methods.
PDF
点此查看论文截图
Active Learning Strategies for Weakly-supervised Object Detection
Authors:Huy V. Vo, Oriane Siméoni, Spyros Gidaris, Andrei Bursuc, Patrick Pérez, Jean Ponce
Object detectors trained with weak annotations are affordable alternatives to fully-supervised counterparts. However, there is still a significant performance gap between them. We propose to narrow this gap by fine-tuning a base pre-trained weakly-supervised detector with a few fully-annotated samples automatically selected from the training set using ``box-in-box’’ (BiB), a novel active learning strategy designed specifically to address the well-documented failure modes of weakly-supervised detectors. Experiments on the VOC07 and COCO benchmarks show that BiB outperforms other active learning techniques and significantly improves the base weakly-supervised detector’s performance with only a few fully-annotated images per class. BiB reaches 97% of the performance of fully-supervised Fast RCNN with only 10% of fully-annotated images on VOC07. On COCO, using on average 10 fully-annotated images per class, or equivalently 1% of the training set, BiB also reduces the performance gap (in AP) between the weakly-supervised detector and the fully-supervised Fast RCNN by over 70%, showing a good trade-off between performance and data efficiency. Our code is publicly available at https://github.com/huyvvo/BiB.
PDF Accepted to European Conference on Computer Vision (ECCV) 2022. Contains 27 pages, 9 tables and 6 figures
点此查看论文截图
Behind Every Domain There is a Shift: Adapting Distortion-aware Vision Transformers for Panoramic Semantic Segmentation
Authors:Jiaming Zhang, Kailun Yang, Hao Shi, Simon Reiß, Kunyu Peng, Chaoxiang Ma, Haodong Fu, Kaiwei Wang, Rainer Stiefelhagen
In this paper, we address panoramic semantic segmentation, which provides a full-view and dense-pixel understanding of surroundings in a holistic way. Panoramic segmentation is under-explored due to two critical challenges: (1) image distortions and object deformations on panoramas; (2) lack of annotations for training panoramic segmenters. To tackle these problems, we propose a Transformer for Panoramic Semantic Segmentation (Trans4PASS) architecture. First, to enhance distortion awareness, Trans4PASS, equipped with Deformable Patch Embedding (DPE) and Deformable MLP (DMLP) modules, is capable of handling object deformations and image distortions whenever (before or after adaptation) and wherever (shallow or deep levels) by design. We further introduce the upgraded Trans4PASS+ model, featuring DMLPv2 with parallel token mixing to improve the flexibility and generalizability in modeling discriminative cues. Second, we propose a Mutual Prototypical Adaptation (MPA) strategy for unsupervised domain adaptation. Third, aside from Pinhole-to-Panoramic (Pin2Pan) adaptation, we create a new dataset (SynPASS) with 9,080 panoramic images to explore a Synthetic-to-Real (Syn2Real) adaptation scheme in 360{\deg} imagery. Extensive experiments are conducted, which cover indoor and outdoor scenarios, and each of them is investigated with Pin2Pan and Syn2Real regimens. Trans4PASS+ achieves state-of-the-art performances on four domain adaptive panoramic semantic segmentation benchmarks. Code is available at https://github.com/jamycheung/Trans4PASS.
PDF Extended version of CVPR 2022 paper arXiv:2203.01452. Code is available at https://github.com/jamycheung/Trans4PASS
点此查看论文截图
Salient Object Detection for Point Clouds
Authors:Songlin Fan, Wei Gao, Ge Li
This paper researches the unexplored task-point cloud salient object detection (SOD). Differing from SOD for images, we find the attention shift of point clouds may provoke saliency conflict, i.e., an object paradoxically belongs to salient and non-salient categories. To eschew this issue, we present a novel view-dependent perspective of salient objects, reasonably reflecting the most eye-catching objects in point cloud scenarios. Following this formulation, we introduce PCSOD, the first dataset proposed for point cloud SOD consisting of 2,872 in-/out-door 3D views. The samples in our dataset are labeled with hierarchical annotations, e.g., super-/sub-class, bounding box, and segmentation map, which endows the brilliant generalizability and broad applicability of our dataset verifying various conjectures. To evidence the feasibility of our solution, we further contribute a baseline model and benchmark five representative models for a comprehensive comparison. The proposed model can effectively analyze irregular and unordered points for detecting salient objects. Thanks to incorporating the task-tailored designs, our method shows visible superiority over other baselines, producing more satisfactory results. Extensive experiments and discussions reveal the promising potential of this research field, paving the way for further study.
PDF Accepted to ECCV 2022. Project Page: https://git.openi.org.cn/OpenPointCloud/PCSOD
点此查看论文截图
W2N:Switching From Weak Supervision to Noisy Supervision for Object Detection
Authors:Zitong Huang, Yiping Bao, Bowen Dong, Erjin Zhou, Wangmeng Zuo
Weakly-supervised object detection (WSOD) aims to train an object detector only requiring the image-level annotations. Recently, some works have managed to select the accurate boxes generated from a well-trained WSOD network to supervise a semi-supervised detection framework for better performance. However, these approaches simply divide the training set into labeled and unlabeled sets according to the image-level criteria, such that sufficient mislabeled or wrongly localized box predictions are chosen as pseudo ground-truths, resulting in a sub-optimal solution of detection performance. To overcome this issue, we propose a novel WSOD framework with a new paradigm that switches from weak supervision to noisy supervision (W2N). Generally, with given pseudo ground-truths generated from the well-trained WSOD network, we propose a two-module iterative training algorithm to refine pseudo labels and supervise better object detector progressively. In the localization adaptation module, we propose a regularization loss to reduce the proportion of discriminative parts in original pseudo ground-truths, obtaining better pseudo ground-truths for further training. In the semi-supervised module, we propose a two tasks instance-level split method to select high-quality labels for training a semi-supervised detector. Experimental results on different benchmarks verify the effectiveness of W2N, and our W2N outperforms all existing pure WSOD methods and transfer learning methods. Our code is publicly available at https://github.com/1170300714/w2n_wsod.
PDF ECCV2022
点此查看论文截图
Interactron: Embodied Adaptive Object Detection
Authors:Klemen Kotar, Roozbeh Mottaghi
Over the years various methods have been proposed for the problem of object detection. Recently, we have witnessed great strides in this domain owing to the emergence of powerful deep neural networks. However, there are typically two main assumptions common among these approaches. First, the model is trained on a fixed training set and is evaluated on a pre-recorded test set. Second, the model is kept frozen after the training phase, so no further updates are performed after the training is finished. These two assumptions limit the applicability of these methods to real-world settings. In this paper, we propose Interactron, a method for adaptive object detection in an interactive setting, where the goal is to perform object detection in images observed by an embodied agent navigating in different environments. Our idea is to continue training during inference and adapt the model at test time without any explicit supervision via interacting with the environment. Our adaptive object detection model provides a 7.2 point improvement in AP (and 12.7 points in AP50) over DETR, a recent, high-performance object detector. Moreover, we show that our object detection model adapts to environments with completely different appearance characteristics, and performs well in them. The code is available at: https://github.com/allenai/interactron .
PDF CVPR 2022