2022-07-25 更新
Pyramid Transformer for Traffic Sign Detection
Authors:Omid Nejati Manzari, Amin Boudesh, Shahriar B. Shokouhi
Traffic sign detection is a vital task in the visual system of self-driving cars and the automated driving system. Recently, novel Transformer-based models have achieved encouraging results for various computer vision tasks. We still observed that vanilla ViT could not yield satisfactory results in traffic sign detection because the overall size of the datasets is very small and the class distribution of traffic signs is extremely unbalanced. To overcome this problem, a novel Pyramid Transformer with locality mechanisms is proposed in this paper. Specifically, Pyramid Transformer has several spatial pyramid reduction layers to shrink and embed the input image into tokens with rich multi-scale context by using atrous convolutions. Moreover, it inherits an intrinsic scale invariance inductive bias and is able to learn local feature representation for objects at various scales, thereby enhancing the network robustness against the size discrepancy of traffic signs. The experiments are conducted on the German Traffic Sign Detection Benchmark (GTSDB). The results demonstrate the superiority of the proposed model in the traffic sign detection tasks. More specifically, Pyramid Transformer achieves 77.8% mAP on GTSDB when applied to the Cascade RCNN as the backbone, which surpasses most well-known and widely-used state-of-the-art models.
PDF
点此查看论文截图
Facial Expression Recognition using Vanilla ViT backbones with MAE Pretraining
Authors:Jia Li, Ziyang Zhang
Humans usually convey emotions voluntarily or involuntarily by facial expressions. Automatically recognizing the basic expression (such as happiness, sadness, and neutral) from a facial image, i.e., facial expression recognition (FER), is extremely challenging and attracts much research interests. Large scale datasets and powerful inference models have been proposed to address the problem. Though considerable progress has been made, most of the state of the arts employing convolutional neural networks (CNNs) or elaborately modified Vision Transformers (ViTs) depend heavily on upstream supervised pretraining. Transformers are taking place the domination of CNNs in more and more computer vision tasks. But they usually need much more data to train, since they use less inductive biases compared with CNNs. To explore whether a vanilla ViT without extra training samples from upstream tasks is able to achieve competitive accuracy, we use a plain ViT with MAE pretraining to perform the FER task. Specifically, we first pretrain the original ViT as a Masked Autoencoder (MAE) on a large facial expression dataset without expression labels. Then, we fine-tune the ViT on popular facial expression datasets with expression labels. The presented method is quite competitive with 90.22\% on RAF-DB, 61.73\% on AfectNet and can serve as a simple yet strong ViT-based baseline for FER studies.
PDF 3 pages