检测/分割/跟踪


2022-07-25 更新

DID-M3D: Decoupling Instance Depth for Monocular 3D Object Detection

Authors:Liang Peng, Xiaopei Wu, Zheng Yang, Haifeng Liu, Deng Cai

Monocular 3D detection has drawn much attention from the community due to its low cost and setup simplicity. It takes an RGB image as input and predicts 3D boxes in the 3D space. The most challenging sub-task lies in the instance depth estimation. Previous works usually use a direct estimation method. However, in this paper we point out that the instance depth on the RGB image is non-intuitive. It is coupled by visual depth clues and instance attribute clues, making it hard to be directly learned in the network. Therefore, we propose to reformulate the instance depth to the combination of the instance visual surface depth (visual depth) and the instance attribute depth (attribute depth). The visual depth is related to objects’ appearances and positions on the image. By contrast, the attribute depth relies on objects’ inherent attributes, which are invariant to the object affine transformation on the image. Correspondingly, we decouple the 3D location uncertainty into visual depth uncertainty and attribute depth uncertainty. By combining different types of depths and associated uncertainties, we can obtain the final instance depth. Furthermore, data augmentation in monocular 3D detection is usually limited due to the physical nature, hindering the boost of performance. Based on the proposed instance depth disentanglement strategy, we can alleviate this problem. Evaluated on KITTI, our method achieves new state-of-the-art results, and extensive ablation studies validate the effectiveness of each component in our method. The codes are released at https://github.com/SPengLiang/DID-M3D.
PDF ECCV 2022

点此查看论文截图

QueryProp: Object Query Propagation for High-Performance Video Object Detection

Authors:Fei He, Naiyu Gao, Jian Jia, Xin Zhao, Kaiqi Huang

Video object detection has been an important yet challenging topic in computer vision. Traditional methods mainly focus on designing the image-level or box-level feature propagation strategies to exploit temporal information. This paper argues that with a more effective and efficient feature propagation framework, video object detectors can gain improvement in terms of both accuracy and speed. For this purpose, this paper studies object-level feature propagation, and proposes an object query propagation (QueryProp) framework for high-performance video object detection. The proposed QueryProp contains two propagation strategies: 1) query propagation is performed from sparse key frames to dense non-key frames to reduce the redundant computation on non-key frames; 2) query propagation is performed from previous key frames to the current key frame to improve feature representation by temporal context modeling. To further facilitate query propagation, an adaptive propagation gate is designed to achieve flexible key frame selection. We conduct extensive experiments on the ImageNet VID dataset. QueryProp achieves comparable accuracy with state-of-the-art methods and strikes a decent accuracy/speed trade-off. Code is available at https://github.com/hf1995/QueryProp.
PDF This paper is accepted to AAAI2022

点此查看论文截图

DEVIANT: Depth EquiVarIAnt NeTwork for Monocular 3D Object Detection

Authors:Abhinav Kumar, Garrick Brazil, Enrique Corona, Armin Parchami, Xiaoming Liu

Modern neural networks use building blocks such as convolutions that are equivariant to arbitrary 2D translations. However, these vanilla blocks are not equivariant to arbitrary 3D translations in the projective manifold. Even then, all monocular 3D detectors use vanilla blocks to obtain the 3D coordinates, a task for which the vanilla blocks are not designed for. This paper takes the first step towards convolutions equivariant to arbitrary 3D translations in the projective manifold. Since the depth is the hardest to estimate for monocular detection, this paper proposes Depth EquiVarIAnt NeTwork (DEVIANT) built with existing scale equivariant steerable blocks. As a result, DEVIANT is equivariant to the depth translations in the projective manifold whereas vanilla networks are not. The additional depth equivariance forces the DEVIANT to learn consistent depth estimates, and therefore, DEVIANT achieves state-of-the-art monocular 3D detection results on KITTI and Waymo datasets in the image-only category and performs competitively to methods using extra information. Moreover, DEVIANT works better than vanilla networks in cross-dataset evaluation. Code and models at https://github.com/abhi1kumar/DEVIANT
PDF ECCV 2022

点此查看论文截图

DeVIS: Making Deformable Transformers Work for Video Instance Segmentation

Authors:Adrià Caelles, Tim Meinhardt, Guillem Brasó, Laura Leal-Taixé

Video Instance Segmentation (VIS) jointly tackles multi-object detection, tracking, and segmentation in video sequences. In the past, VIS methods mirrored the fragmentation of these subtasks in their architectural design, hence missing out on a joint solution. Transformers recently allowed to cast the entire VIS task as a single set-prediction problem. Nevertheless, the quadratic complexity of existing Transformer-based methods requires long training times, high memory requirements, and processing of low-single-scale feature maps. Deformable attention provides a more efficient alternative but its application to the temporal domain or the segmentation task have not yet been explored. In this work, we present Deformable VIS (DeVIS), a VIS method which capitalizes on the efficiency and performance of deformable Transformers. To reason about all VIS subtasks jointly over multiple frames, we present temporal multi-scale deformable attention with instance-aware object queries. We further introduce a new image and video instance mask head with multi-scale features, and perform near-online video processing with multi-cue clip tracking. DeVIS reduces memory as well as training time requirements, and achieves state-of-the-art results on the YouTube-VIS 2021, as well as the challenging OVIS dataset. Code is available at https://github.com/acaelles97/DeVIS.
PDF

点此查看论文截图

Few-shot Object Counting and Detection

Authors:Thanh Nguyen, Chau Pham, Khoi Nguyen, Minh Hoai

We tackle a new task of few-shot object counting and detection. Given a few exemplar bounding boxes of a target object class, we seek to count and detect all objects of the target class. This task shares the same supervision as the few-shot object counting but additionally outputs the object bounding boxes along with the total object count. To address this challenging problem, we introduce a novel two-stage training strategy and a novel uncertainty-aware few-shot object detector: Counting-DETR. The former is aimed at generating pseudo ground-truth bounding boxes to train the latter. The latter leverages the pseudo ground-truth provided by the former but takes the necessary steps to account for the imperfection of pseudo ground-truth. To validate the performance of our method on the new task, we introduce two new datasets named FSCD-147 and FSCD-LVIS. Both datasets contain images with complex scenes, multiple object classes per image, and a huge variation in object shapes, sizes, and appearance. Our proposed approach outperforms very strong baselines adapted from few-shot object counting and few-shot object detection with a large margin in both counting and detection metrics. The code and models are available at \url{https://github.com/VinAIResearch/Counting-DETR}.
PDF Accepted to ECCV 2020; The first two authors contributed equally

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录