2022-07-24 更新
Instance-Aware Observer Network for Out-of-Distribution Object Segmentation
Authors:Victor Besnier, Andrei Bursuc, David Picard, Alexandre Briot
Recent work on Observer Network has shown promising results on Out-Of-Distribution (OOD) detection for semantic segmentation. These methods have difficulty in precisely locating the point of interest in the image, i.e, the anomaly. This limitation is due to the difficulty of fine-grained prediction at the pixel level. To address this issue, we provide instance knowledge to the observer. We extend the approach of ObsNet by harnessing an instance-wise mask prediction. We use an additional, class agnostic, object detector to filter and aggregate observer predictions. Finally, we predict an unique anomaly score for each instance in the image. We show that our proposed method accurately disentangle in-distribution objects from Out-Of-Distribution objects on three datasets.
PDF
点此查看论文截图
Open-world Semantic Segmentation via Contrasting and Clustering Vision-Language Embedding
Authors:Quande Liu, Youpeng Wen, Jianhua Han, Chunjing Xu, Hang Xu, Xiaodan Liang
To bridge the gap between supervised semantic segmentation and real-world applications that acquires one model to recognize arbitrary new concepts, recent zero-shot segmentation attracts a lot of attention by exploring the relationships between unseen and seen object categories, yet requiring large amounts of densely-annotated data with diverse base classes. In this paper, we propose a new open-world semantic segmentation pipeline that makes the first attempt to learn to segment semantic objects of various open-world categories without any efforts on dense annotations, by purely exploiting the image-caption data that naturally exist on the Internet. Our method, Vision-language-driven Semantic Segmentation (ViL-Seg), employs an image and a text encoder to generate visual and text embeddings for the image-caption data, with two core components that endow its segmentation ability: First, the image encoder is jointly trained with a vision-based contrasting and a cross-modal contrasting, which encourage the visual embeddings to preserve both fine-grained semantics and high-level category information that are crucial for the segmentation task. Furthermore, an online clustering head is devised over the image encoder, which allows to dynamically segment the visual embeddings into distinct semantic groups such that they can be classified by comparing with various text embeddings to complete our segmentation pipeline. Experiments show that without using any data with dense annotations, our method can directly segment objects of arbitrary categories, outperforming zero-shot segmentation methods that require data labeling on three benchmark datasets.
PDF Accepted to ECCV 2022
点此查看论文截图
DIMBA: Discretely Masked Black-Box Attack in Single Object Tracking
Authors:Xiangyu Yin, Wenjie Ruan, Jonathan Fieldsend
The adversarial attack can force a CNN-based model to produce an incorrect output by craftily manipulating human-imperceptible input. Exploring such perturbations can help us gain a deeper understanding of the vulnerability of neural networks, and provide robustness to deep learning against miscellaneous adversaries. Despite extensive studies focusing on the robustness of image, audio, and NLP, works on adversarial examples of visual object tracking — especially in a black-box manner — are quite lacking. In this paper, we propose a novel adversarial attack method to generate noises for single object tracking under black-box settings, where perturbations are merely added on initial frames of tracking sequences, which is difficult to be noticed from the perspective of a whole video clip. Specifically, we divide our algorithm into three components and exploit reinforcement learning for localizing important frame patches precisely while reducing unnecessary computational queries overhead. Compared to existing techniques, our method requires fewer queries on initialized frames of a video to manipulate competitive or even better attack performance. We test our algorithm in both long-term and short-term datasets, including OTB100, VOT2018, UAV123, and LaSOT. Extensive experiments demonstrate the effectiveness of our method on three mainstream types of trackers: discrimination, Siamese-based, and reinforcement learning-based trackers.
PDF
点此查看论文截图
Backbone is All Your Need: A Simplified Architecture for Visual Object Tracking
Authors:Boyu Chen, Peixia Li, Lei Bai, Lei Qiao, Qiuhong Shen, Bo Li, Weihao Gan, Wei Wu, Wanli Ouyang
Exploiting a general-purpose neural architecture to replace hand-wired designs or inductive biases has recently drawn extensive interest. However, existing tracking approaches rely on customized sub-modules and need prior knowledge for architecture selection, hindering the tracking development in a more general system. This paper presents a Simplified Tracking architecture (SimTrack) by leveraging a transformer backbone for joint feature extraction and interaction. Unlike existing Siamese trackers, we serialize the input images and concatenate them directly before the one-branch backbone. Feature interaction in the backbone helps to remove well-designed interaction modules and produce a more efficient and effective framework. To reduce the information loss from down-sampling in vision transformers, we further propose a foveal window strategy, providing more diverse input patches with acceptable computational costs. Our SimTrack improves the baseline with 2.5%/2.6% AUC gains on LaSOT/TNL2K and gets results competitive with other specialized tracking algorithms without bells and whistles.
PDF Accepted by ECCV 2022
点此查看论文截图
A hierarchical semantic segmentation framework for computer vision-based bridge damage detection
Authors:Jingxiao Liu, Yujie Wei, Bingqing Chen
Computer vision-based damage detection using remote cameras and unmanned aerial vehicles (UAVs) enables efficient and low-cost bridge health monitoring that reduces labor costs and the needs for sensor installation and maintenance. By leveraging recent semantic image segmentation approaches, we are able to find regions of critical structural components and recognize damage at the pixel level using images as the only input. However, existing methods perform poorly when detecting small damages (e.g., cracks and exposed rebars) and thin objects with limited image samples, especially when the components of interest are highly imbalanced. To this end, this paper introduces a semantic segmentation framework that imposes the hierarchical semantic relationship between component category and damage types. For example, certain concrete cracks only present on bridge columns and therefore the non-column region will be masked out when detecting such damages. In this way, the damage detection model could focus on learning features from possible damaged regions only and avoid the effects of other irrelevant regions. We also utilize multi-scale augmentation that provides views with different scales that preserves contextual information of each image without losing the ability of handling small and thin objects. Furthermore, the proposed framework employs important sampling that repeatedly samples images containing rare components (e.g., railway sleeper and exposed rebars) to provide more data samples, which addresses the imbalanced data challenge.
PDF