无监督/半监督/对比学习


2022-07-23 更新

Unsupervised Industrial Anomaly Detection via Pattern Generative and Contrastive Networks

Authors:Jianfeng Huang, Chenyang Li, Yimin Lin, Shiguo Lian

It is hard to collect enough flaw images for training deep learning network in industrial production. Therefore, existing industrial anomaly detection methods prefer to use CNN-based unsupervised detection and localization network to achieve this task. However, these methods always fail when there are varieties happened in new signals since traditional end-to-end networks suffer barriers of fitting nonlinear model in high-dimensional space. Moreover, they have a memory library by clustering the feature of normal images essentially, which cause it is not robust to texture change. To this end, we propose the Vision Transformer based (VIT-based) unsupervised anomaly detection network. It utilizes a hierarchical task learning and human experience to enhance its interpretability. Our network consists of pattern generation and comparison networks. Pattern generation network uses two VIT-based encoder modules to extract the feature of two consecutive image patches, then uses VIT-based decoder module to learn the human designed style of these features and predict the third image patch. After this, we use the Siamese-based network to compute the similarity of the generation image patch and original image patch. Finally, we refine the anomaly localization by the bi-directional inference strategy. Comparison experiments on public dataset MVTec dataset show our method achieves 99.8% AUC, which surpasses previous state-of-the-art methods. In addition, we give a qualitative illustration on our own leather and cloth datasets. The accurate segment results strongly prove the accuracy of our method in anomaly detection.
PDF

点此查看论文截图

Contrastive Registration for Unsupervised Medical Image Segmentation

Authors:Lihao Liu, Angelica I Aviles-Rivero, Carola-Bibiane Schönlieb

Medical image segmentation is a relevant task as it serves as the first step for several diagnosis processes, thus it is indispensable in clinical usage. Whilst major success has been reported using supervised techniques, they assume a large and well-representative labelled set. This is a strong assumption in the medical domain where annotations are expensive, time-consuming, and inherent to human bias. To address this problem, unsupervised techniques have been proposed in the literature yet it is still an open problem due to the difficulty of learning any transformation pattern. In this work, we present a novel optimisation model framed into a new CNN-based contrastive registration architecture for unsupervised medical image segmentation. The core of our approach is to exploit image-level registration and feature-level from a contrastive learning mechanism, to perform registration-based segmentation. Firstly, we propose an architecture to capture the image-to-image transformation pattern via registration for unsupervised medical image segmentation. Secondly, we embed a contrastive learning mechanism into the registration architecture to enhance the discriminating capacity of the network in the feature-level. We show that our proposed technique mitigates the major drawbacks of existing unsupervised techniques. We demonstrate, through numerical and visual experiments, that our technique substantially outperforms the current state-of-the-art unsupervised segmentation methods on two major medical image datasets.
PDF 12 pages, 8 figures, 4 tables

点此查看论文截图

Pseudo-label Guided Cross-video Pixel Contrast for Robotic Surgical Scene Segmentation with Limited Annotations

Authors:Yang Yu, Zixu Zhao, Yueming Jin, Guangyong Chen, Qi Dou, Pheng-Ann Heng

Surgical scene segmentation is fundamentally crucial for prompting cognitive assistance in robotic surgery. However, pixel-wise annotating surgical video in a frame-by-frame manner is expensive and time consuming. To greatly reduce the labeling burden, in this work, we study semi-supervised scene segmentation from robotic surgical video, which is practically essential yet rarely explored before. We consider a clinically suitable annotation situation under the equidistant sampling. We then propose PGV-CL, a novel pseudo-label guided cross-video contrast learning method to boost scene segmentation. It effectively leverages unlabeled data for a trusty and global model regularization that produces more discriminative feature representation. Concretely, for trusty representation learning, we propose to incorporate pseudo labels to instruct the pair selection, obtaining more reliable representation pairs for pixel contrast. Moreover, we expand the representation learning space from previous image-level to cross-video, which can capture the global semantics to benefit the learning process. We extensively evaluate our method on a public robotic surgery dataset EndoVis18 and a public cataract dataset CaDIS. Experimental results demonstrate the effectiveness of our method, consistently outperforming the state-of-the-art semi-supervised methods under different labeling ratios, and even surpassing fully supervised training on EndoVis18 with 10.1% labeling.
PDF Accepted by IROS 2022

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录