检测/分割/跟踪


2022-07-20 更新

Box-supervised Instance Segmentation with Level Set Evolution

Authors:Wentong Li, Wenyu Liu, Jianke Zhu, Miaomiao Cui, Xiansheng Hua, Lei Zhang

In contrast to the fully supervised methods using pixel-wise mask labels, box-supervised instance segmentation takes advantage of the simple box annotations, which has recently attracted a lot of research attentions. In this paper, we propose a novel single-shot box-supervised instance segmentation approach, which integrates the classical level set model with deep neural network delicately. Specifically, our proposed method iteratively learns a series of level sets through a continuous Chan-Vese energy-based function in an end-to-end fashion. A simple mask supervised SOLOv2 model is adapted to predict the instance-aware mask map as the level set for each instance. Both the input image and its deep features are employed as the input data to evolve the level set curves, where a box projection function is employed to obtain the initial boundary. By minimizing the fully differentiable energy function, the level set for each instance is iteratively optimized within its corresponding bounding box annotation. The experimental results on four challenging benchmarks demonstrate the leading performance of our proposed approach to robust instance segmentation in various scenarios. The code is available at: https://github.com/LiWentomng/boxlevelset.
PDF 17 page, 4figures, ECCV2022

点此查看论文截图

Class-agnostic Object Detection with Multi-modal Transformer

Authors:Muhammad Maaz, Hanoona Rasheed, Salman Khan, Fahad Shahbaz Khan, Rao Muhammad Anwer, Ming-Hsuan Yang

What constitutes an object? This has been a long-standing question in computer vision. Towards this goal, numerous learning-free and learning-based approaches have been developed to score objectness. However, they generally do not scale well across new domains and novel objects. In this paper, we advocate that existing methods lack a top-down supervision signal governed by human-understandable semantics. For the first time in literature, we demonstrate that Multi-modal Vision Transformers (MViT) trained with aligned image-text pairs can effectively bridge this gap. Our extensive experiments across various domains and novel objects show the state-of-the-art performance of MViTs to localize generic objects in images. Based on the observation that existing MViTs do not include multi-scale feature processing and usually require longer training schedules, we develop an efficient MViT architecture using multi-scale deformable attention and late vision-language fusion. We show the significance of MViT proposals in a diverse range of applications including open-world object detection, salient and camouflage object detection, supervised and self-supervised detection tasks. Further, MViTs can adaptively generate proposals given a specific language query and thus offer enhanced interactability. Code: \url{https://git.io/J1HPY}.
PDF Accepted at ECCV 2022

点此查看论文截图

PoserNet: Refining Relative Camera Poses Exploiting Object Detections

Authors:Matteo Taiana, Matteo Toso, Stuart James, Alessio Del Bue

The estimation of the camera poses associated with a set of images commonly relies on feature matches between the images. In contrast, we are the first to address this challenge by using objectness regions to guide the pose estimation problem rather than explicit semantic object detections. We propose Pose Refiner Network (PoserNet) a light-weight Graph Neural Network to refine the approximate pair-wise relative camera poses. PoserNet exploits associations between the objectness regions - concisely expressed as bounding boxes - across multiple views to globally refine sparsely connected view graphs. We evaluate on the 7-Scenes dataset across varied sizes of graphs and show how this process can be beneficial to optimisation-based Motion Averaging algorithms improving the median error on the rotation by 62 degrees with respect to the initial estimates obtained based on bounding boxes. Code and data are available at https://github.com/IIT-PAVIS/PoserNet.
PDF Accepted at ECCV 2022

点此查看论文截图

Exploiting Unlabeled Data with Vision and Language Models for Object Detection

Authors:Shiyu Zhao, Zhixing Zhang, Samuel Schulter, Long Zhao, Vijay Kumar B. G, Anastasis Stathopoulos, Manmohan Chandraker, Dimitris Metaxas

Building robust and generic object detection frameworks requires scaling to larger label spaces and bigger training datasets. However, it is prohibitively costly to acquire annotations for thousands of categories at a large scale. We propose a novel method that leverages the rich semantics available in recent vision and language models to localize and classify objects in unlabeled images, effectively generating pseudo labels for object detection. Starting with a generic and class-agnostic region proposal mechanism, we use vision and language models to categorize each region of an image into any object category that is required for downstream tasks. We demonstrate the value of the generated pseudo labels in two specific tasks, open-vocabulary detection, where a model needs to generalize to unseen object categories, and semi-supervised object detection, where additional unlabeled images can be used to improve the model. Our empirical evaluation shows the effectiveness of the pseudo labels in both tasks, where we outperform competitive baselines and achieve a novel state-of-the-art for open-vocabulary object detection. Our code is available at https://github.com/xiaofeng94/VL-PLM.
PDF Accepted to ECCV 2022 (with the supplementary document)

点此查看论文截图

PETR: Position Embedding Transformation for Multi-View 3D Object Detection

Authors:Yingfei Liu, Tiancai Wang, Xiangyu Zhang, Jian Sun

In this paper, we develop position embedding transformation (PETR) for multi-view 3D object detection. PETR encodes the position information of 3D coordinates into image features, producing the 3D position-aware features. Object query can perceive the 3D position-aware features and perform end-to-end object detection. PETR achieves state-of-the-art performance (50.4% NDS and 44.1% mAP) on standard nuScenes dataset and ranks 1st place on the benchmark. It can serve as a simple yet strong baseline for future research. Code is available at \url{https://github.com/megvii-research/PETR}.
PDF Accepted by ECCV 2022. Code is available at \url{https://github.com/megvii-research/PETR}

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录