无监督/半监督/对比学习


2022-07-19 更新

Embedding contrastive unsupervised features to cluster in- and out-of-distribution noise in corrupted image datasets

Authors:Paul Albert, Eric Arazo, Noel E. O’Connor, Kevin McGuinness

Using search engines for web image retrieval is a tempting alternative to manual curation when creating an image dataset, but their main drawback remains the proportion of incorrect (noisy) samples retrieved. These noisy samples have been evidenced by previous works to be a mixture of in-distribution (ID) samples, assigned to the incorrect category but presenting similar visual semantics to other classes in the dataset, and out-of-distribution (OOD) images, which share no semantic correlation with any category from the dataset. The latter are, in practice, the dominant type of noisy images retrieved. To tackle this noise duality, we propose a two stage algorithm starting with a detection step where we use unsupervised contrastive feature learning to represent images in a feature space. We find that the alignment and uniformity principles of contrastive learning allow OOD samples to be linearly separated from ID samples on the unit hypersphere. We then spectrally embed the unsupervised representations using a fixed neighborhood size and apply an outlier sensitive clustering at the class level to detect the clean and OOD clusters as well as ID noisy outliers. We finally train a noise robust neural network that corrects ID noise to the correct category and utilizes OOD samples in a guided contrastive objective, clustering them to improve low-level features. Our algorithm improves the state-of-the-art results on synthetic noise image datasets as well as real-world web-crawled data. Our work is fully reproducible github.com/PaulAlbert31/SNCF.
PDF Accepted at ECCV 2022

点此查看论文截图

Contrastive Graph Learning for Population-based fMRI Classification

Authors:Xuesong Wang, Lina Yao, Islem Rekik, Yu Zhang

Contrastive self-supervised learning has recently benefited fMRI classification with inductive biases. Its weak label reliance prevents overfitting on small medical datasets and tackles the high intraclass variances. Nonetheless, existing contrastive methods generate resemblant pairs only on pixel-level features of 3D medical images, while the functional connectivity that reveals critical cognitive information is under-explored. Additionally, existing methods predict labels on individual contrastive representation without recognizing neighbouring information in the patient group, whereas interpatient contrast can act as a similarity measure suitable for population-based classification. We hereby proposed contrastive functional connectivity graph learning for population-based fMRI classification. Representations on the functional connectivity graphs are “repelled” for heterogeneous patient pairs meanwhile homogeneous pairs “attract” each other. Then a dynamic population graph that strengthens the connections between similar patients is updated for classification. Experiments on a multi-site dataset ADHD200 validate the superiority of the proposed method on various metrics. We initially visualize the population relationships and exploit potential subtypes.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录