I2I Translation


2022-07-19 更新

DynaST: Dynamic Sparse Transformer for Exemplar-Guided Image Generation

Authors:Songhua Liu, Jingwen Ye, Sucheng Ren, Xinchao Wang

One key challenge of exemplar-guided image generation lies in establishing fine-grained correspondences between input and guided images. Prior approaches, despite the promising results, have relied on either estimating dense attention to compute per-point matching, which is limited to only coarse scales due to the quadratic memory cost, or fixing the number of correspondences to achieve linear complexity, which lacks flexibility. In this paper, we propose a dynamic sparse attention based Transformer model, termed Dynamic Sparse Transformer (DynaST), to achieve fine-level matching with favorable efficiency. The heart of our approach is a novel dynamic-attention unit, dedicated to covering the variation on the optimal number of tokens one position should focus on. Specifically, DynaST leverages the multi-layer nature of Transformer structure, and performs the dynamic attention scheme in a cascaded manner to refine matching results and synthesize visually-pleasing outputs. In addition, we introduce a unified training objective for DynaST, making it a versatile reference-based image translation framework for both supervised and unsupervised scenarios. Extensive experiments on three applications, pose-guided person image generation, edge-based face synthesis, and undistorted image style transfer, demonstrate that DynaST achieves superior performance in local details, outperforming the state of the art while reducing the computational cost significantly. Our code is available at https://github.com/Huage001/DynaST
PDF ECCV 2022

点此查看论文截图

Neural Color Operators for Sequential Image Retouching

Authors:Yili Wang, Xin Li, Kun Xu, Dongliang He, Qi Zhang, Fu Li, Errui Ding

We propose a novel image retouching method by modeling the retouching process as performing a sequence of newly introduced trainable neural color operators. The neural color operator mimics the behavior of traditional color operators and learns pixelwise color transformation while its strength is controlled by a scalar. To reflect the homomorphism property of color operators, we employ equivariant mapping and adopt an encoder-decoder structure which maps the non-linear color transformation to a much simpler transformation (i.e., translation) in a high dimensional space. The scalar strength of each neural color operator is predicted using CNN based strength predictors by analyzing global image statistics. Overall, our method is rather lightweight and offers flexible controls. Experiments and user studies on public datasets show that our method consistently achieves the best results compared with SOTA methods in both quantitative measures and visual qualities. The code and data will be made publicly available.
PDF Accepted to ECCV 2022. Code is available at https://github.com/amberwangyili/neurop

点此查看论文截图

Angular Gap: Reducing the Uncertainty of Image Difficulty through Model Calibration

Authors:Bohua Peng, Mobarakol Islam, Mei Tu

Curriculum learning needs example difficulty to proceed from easy to hard. However, the credibility of image difficulty is rarely investigated, which can seriously affect the effectiveness of curricula. In this work, we propose Angular Gap, a measure of difficulty based on the difference in angular distance between feature embeddings and class-weight embeddings built by hyperspherical learning. To ascertain difficulty estimation, we introduce class-wise model calibration, as a post-training technique, to the learnt hyperbolic space. This bridges the gap between probabilistic model calibration and angular distance estimation of hyperspherical learning. We show the superiority of our calibrated Angular Gap over recent difficulty metrics on CIFAR10-H and ImageNetV2. We further propose Angular Gap based curriculum learning for unsupervised domain adaptation that can translate from learning easy samples to mining hard samples. We combine this curriculum with a state-of-the-art self-training method, Cycle Self Training (CST). The proposed Curricular CST learns robust representations and outperforms recent baselines on Office31 and VisDA 2017.
PDF 13 pages

点此查看论文截图

Multimodal Token Fusion for Vision Transformers

Authors:Yikai Wang, Xinghao Chen, Lele Cao, Wenbing Huang, Fuchun Sun, Yunhe Wang

Many adaptations of transformers have emerged to address the single-modal vision tasks, where self-attention modules are stacked to handle input sources like images. Intuitively, feeding multiple modalities of data to vision transformers could improve the performance, yet the inner-modal attentive weights may also be diluted, which could thus undermine the final performance. In this paper, we propose a multimodal token fusion method (TokenFusion), tailored for transformer-based vision tasks. To effectively fuse multiple modalities, TokenFusion dynamically detects uninformative tokens and substitutes these tokens with projected and aggregated inter-modal features. Residual positional alignment is also adopted to enable explicit utilization of the inter-modal alignments after fusion. The design of TokenFusion allows the transformer to learn correlations among multimodal features, while the single-modal transformer architecture remains largely intact. Extensive experiments are conducted on a variety of homogeneous and heterogeneous modalities and demonstrate that TokenFusion surpasses state-of-the-art methods in three typical vision tasks: multimodal image-to-image translation, RGB-depth semantic segmentation, and 3D object detection with point cloud and images. Our code is available at https://github.com/yikaiw/TokenFusion.
PDF CVPR 2022

点此查看论文截图

IGLUE: A Benchmark for Transfer Learning across Modalities, Tasks, and Languages

Authors:Emanuele Bugliarello, Fangyu Liu, Jonas Pfeiffer, Siva Reddy, Desmond Elliott, Edoardo Maria Ponti, Ivan Vulić

Reliable evaluation benchmarks designed for replicability and comprehensiveness have driven progress in machine learning. Due to the lack of a multilingual benchmark, however, vision-and-language research has mostly focused on English language tasks. To fill this gap, we introduce the Image-Grounded Language Understanding Evaluation benchmark. IGLUE brings together - by both aggregating pre-existing datasets and creating new ones - visual question answering, cross-modal retrieval, grounded reasoning, and grounded entailment tasks across 20 diverse languages. Our benchmark enables the evaluation of multilingual multimodal models for transfer learning, not only in a zero-shot setting, but also in newly defined few-shot learning setups. Based on the evaluation of the available state-of-the-art models, we find that translate-test transfer is superior to zero-shot transfer and that few-shot learning is hard to harness for many tasks. Moreover, downstream performance is partially explained by the amount of available unlabelled textual data for pretraining, and only weakly by the typological distance of target-source languages. We hope to encourage future research efforts in this area by releasing the benchmark to the community.
PDF ICML 2022

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录