2022-07-19 更新
Editing Out-of-domain GAN Inversion via Differential Activations
Authors:Haorui Song, Yong Du, Tianyi Xiang, Junyu Dong, Jing Qin, Shengfeng He
Despite the demonstrated editing capacity in the latent space of a pretrained GAN model, inverting real-world images is stuck in a dilemma that the reconstruction cannot be faithful to the original input. The main reason for this is that the distributions between training and real-world data are misaligned, and because of that, it is unstable of GAN inversion for real image editing. In this paper, we propose a novel GAN prior based editing framework to tackle the out-of-domain inversion problem with a composition-decomposition paradigm. In particular, during the phase of composition, we introduce a differential activation module for detecting semantic changes from a global perspective, \ie, the relative gap between the features of edited and unedited images. With the aid of the generated Diff-CAM mask, a coarse reconstruction can intuitively be composited by the paired original and edited images. In this way, the attribute-irrelevant regions can be survived in almost whole, while the quality of such an intermediate result is still limited by an unavoidable ghosting effect. Consequently, in the decomposition phase, we further present a GAN prior based deghosting network for separating the final fine edited image from the coarse reconstruction. Extensive experiments exhibit superiorities over the state-of-the-art methods, in terms of qualitative and quantitative evaluations. The robustness and flexibility of our method is also validated on both scenarios of single attribute and multi-attribute manipulations.
PDF
点此查看论文截图
Quality Assessment of Image Super-Resolution: Balancing Deterministic and Statistical Fidelity
Authors:Wei Zhou, Zhou Wang
There has been a growing interest in developing image super-resolution (SR) algorithms that convert low-resolution (LR) to higher resolution images, but automatically evaluating the visual quality of super-resolved images remains a challenging problem. Here we look at the problem of SR image quality assessment (SR IQA) in a two-dimensional (2D) space of deterministic fidelity (DF) versus statistical fidelity (SF). This allows us to better understand the advantages and disadvantages of existing SR algorithms, which produce images at different clusters in the 2D space of (DF, SF). Specifically, we observe an interesting trend from more traditional SR algorithms that are typically inclined to optimize for DF while losing SF, to more recent generative adversarial network (GAN) based approaches that by contrast exhibit strong advantages in achieving high SF but sometimes appear weak at maintaining DF. Furthermore, we propose an uncertainty weighting scheme based on content-dependent sharpness and texture assessment that merges the two fidelity measures into an overall quality prediction named the Super Resolution Image Fidelity (SRIF) index, which demonstrates superior performance against state-of-the-art IQA models when tested on subject-rated datasets.
PDF Accepted by ACMMM2022 https://github.com/weizhou-geek/SRIF
点此查看论文截图
JigsawGAN: Auxiliary Learning for Solving Jigsaw Puzzles with Generative Adversarial Networks
Authors:Ru Li, Shuaicheng Liu, Guangfu Wang, Guanghui Liu, Bing Zeng
The paper proposes a solution based on Generative Adversarial Network (GAN) for solving jigsaw puzzles. The problem assumes that an image is divided into equal square pieces, and asks to recover the image according to information provided by the pieces. Conventional jigsaw puzzle solvers often determine the relationships based on the boundaries of pieces, which ignore the important semantic information. In this paper, we propose JigsawGAN, a GAN-based auxiliary learning method for solving jigsaw puzzles with unpaired images (with no prior knowledge of the initial images). We design a multi-task pipeline that includes, (1) a classification branch to classify jigsaw permutations, and (2) a GAN branch to recover features to images in correct orders. The classification branch is constrained by the pseudo-labels generated according to the shuffled pieces. The GAN branch concentrates on the image semantic information, where the generator produces the natural images to fool the discriminator, while the discriminator distinguishes whether a given image belongs to the synthesized or the real target domain. These two branches are connected by a flow-based warp module that is applied to warp features to correct the order according to the classification results. The proposed method can solve jigsaw puzzles more efficiently by utilizing both semantic information and boundary information simultaneously. Qualitative and quantitative comparisons against several representative jigsaw puzzle solvers demonstrate the superiority of our method.
PDF Accepted by IEEE Transactions on Image Processing (TIP)
点此查看论文截图
GAN2X: Non-Lambertian Inverse Rendering of Image GANs
Authors:Xingang Pan, Ayush Tewari, Lingjie Liu, Christian Theobalt
2D images are observations of the 3D physical world depicted with the geometry, material, and illumination components. Recovering these underlying intrinsic components from 2D images, also known as inverse rendering, usually requires a supervised setting with paired images collected from multiple viewpoints and lighting conditions, which is resource-demanding. In this work, we present GAN2X, a new method for unsupervised inverse rendering that only uses unpaired images for training. Unlike previous Shape-from-GAN approaches that mainly focus on 3D shapes, we take the first attempt to also recover non-Lambertian material properties by exploiting the pseudo paired data generated by a GAN. To achieve precise inverse rendering, we devise a specularity-aware neural surface representation that continuously models the geometry and material properties. A shading-based refinement technique is adopted to further distill information in the target image and recover more fine details. Experiments demonstrate that GAN2X can accurately decompose 2D images to 3D shape, albedo, and specular properties for different object categories, and achieves the state-of-the-art performance for unsupervised single-view 3D face reconstruction. We also show its applications in downstream tasks including real image editing and lifting 2D GANs to decomposed 3D GANs.
PDF The video demo is available at the project page: https://people.mpi-inf.mpg.de/~xpan/GAN2X/