2022-07-16 更新
ConCL: Concept Contrastive Learning for Dense Prediction Pre-training in Pathology Images
Authors:Jiawei Yang, Hanbo Chen, Yuan Liang, Junzhou Huang, Lei He, Jianhua Yao
Detectingandsegmentingobjectswithinwholeslideimagesis essential in computational pathology workflow. Self-supervised learning (SSL) is appealing to such annotation-heavy tasks. Despite the extensive benchmarks in natural images for dense tasks, such studies are, unfortunately, absent in current works for pathology. Our paper intends to narrow this gap. We first benchmark representative SSL methods for dense prediction tasks in pathology images. Then, we propose concept contrastive learning (ConCL), an SSL framework for dense pre-training. We explore how ConCL performs with concepts provided by different sources and end up with proposing a simple dependency-free concept generating method that does not rely on external segmentation algorithms or saliency detection models. Extensive experiments demonstrate the superiority of ConCL over previous state-of-the-art SSL methods across different settings. Along our exploration, we distll several important and intriguing components contributing to the success of dense pre-training for pathology images. We hope this work could provide useful data points and encourage the community to conduct ConCL pre-training for problems of interest. Code is available.
PDF Accepted as an ECCV 2022 paper. Code is available at https://github.com/Jiawei-Yang/ConCL or https://github.com/TencentAILabHealthcare/ConCL
点此查看论文截图
Strongly Augmented Contrastive Clustering
Authors:Xiaozhi Deng, Dong Huang, Ding-Hua Chen, Chang-Dong Wang, Jian-Huang Lai
Deep clustering has attracted increasing attention in recent years due to its capability of joint representation learning and clustering via deep neural networks. In its latest developments, the contrastive learning has emerged as an effective technique to substantially enhance the deep clustering performance. However, the existing contrastive learning based deep clustering algorithms mostly focus on some carefully-designed augmentations (often with limited transformations to preserve the structure), referred to as weak augmentations, but cannot go beyond the weak augmentations to explore the more opportunities in stronger augmentations (with more aggressive transformations or even severe distortions). In this paper, we present an end-to-end deep clustering approach termed Strongly Augmented Contrastive Clustering (SACC), which extends the conventional two-augmentation-view paradigm to multiple views and jointly leverages strong and weak augmentations for strengthened deep clustering. Particularly, we utilize a backbone network with triply-shared weights, where a strongly augmented view and two weakly augmented views are incorporated. Based on the representations produced by the backbone, the weak-weak view pair and the strong-weak view pairs are simultaneously exploited for the instance-level contrastive learning (via an instance projector) and the cluster-level contrastive learning (via a cluster projector), which, together with the backbone, can be jointly optimized in a purely unsupervised manner. Experimental results on five challenging image datasets have shown the superiority of our SACC approach over the state-of-the-art. The code is available at https://github.com/dengxiaozhi/SACC.
PDF
点此查看论文截图
Adversarial Graph Contrastive Learning with Information Regularization
Authors:Shengyu Feng, Baoyu Jing, Yada Zhu, Hanghang Tong
Contrastive learning is an effective unsupervised method in graph representation learning. Recently, the data augmentation based contrastive learning method has been extended from images to graphs. However, most prior works are directly adapted from the models designed for images. Unlike the data augmentation on images, the data augmentation on graphs is far less intuitive and much harder to provide high-quality contrastive samples, which are the key to the performance of contrastive learning models. This leaves much space for improvement over the existing graph contrastive learning frameworks. In this work, by introducing an adversarial graph view and an information regularizer, we propose a simple but effective method, Adversarial Graph Contrastive Learning (ARIEL), to extract informative contrastive samples within a reasonable constraint. It consistently outperforms the current graph contrastive learning methods in the node classification task over various real-world datasets and further improves the robustness of graph contrastive learning.
PDF WWW 2022