人脸相关


2022-07-16 更新

Octuplet Loss: Make Face Recognition Robust to Image Resolution

Authors:Martin Knoche, Mohamed Elkadeem, Stefan Hörmann, Gerhard Rigoll

Image resolution, or in general, image quality, plays an essential role in the performance of today’s face recognition systems. To address this problem, we propose a novel combination of the popular triplet loss to improve robustness against image resolution via fine-tuning of existing face recognition models. With octuplet loss, we leverage the relationship between high-resolution images and their synthetically down-sampled variants jointly with their identity labels. Fine-tuning several state-of-the-art approaches with our method proves that we can significantly boost performance for cross-resolution (high-to-low resolution) face verification on various datasets without meaningfully exacerbating the performance on high-to-high resolution images. Our method applied on the FaceTransformer network achieves 95.12% face verification accuracy on the challenging XQLFW dataset while reaching 99.73% on the LFW database. Moreover, the low-to-low face verification accuracy benefits from our method. We release our code to allow seamless integration of the octuplet loss into existing frameworks.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录