2022-07-15 更新
Contrastive Deep Supervision
Authors:Linfeng Zhang, Xin Chen, Junbo Zhang, Runpei Dong, Kaisheng Ma
The success of deep learning is usually accompanied by the growth in neural network depth. However, the traditional training method only supervises the neural network at its last layer and propagates the supervision layer-by-layer, which leads to hardship in optimizing the intermediate layers. Recently, deep supervision has been proposed to add auxiliary classifiers to the intermediate layers of deep neural networks. By optimizing these auxiliary classifiers with the supervised task loss, the supervision can be applied to the shallow layers directly. However, deep supervision conflicts with the well-known observation that the shallow layers learn low-level features instead of task-biased high-level semantic features. To address this issue, this paper proposes a novel training framework named Contrastive Deep Supervision, which supervises the intermediate layers with augmentation-based contrastive learning. Experimental results on nine popular datasets with eleven models demonstrate its effects on general image classification, fine-grained image classification and object detection in supervised learning, semi-supervised learning and knowledge distillation. Codes have been released in Github.
PDF Accepted in ECCV2022
点此查看论文截图
Contrastive Cross-Modal Knowledge Sharing Pre-training for Vision-Language Representation Learning and Retrieval
Authors:Keyu Wen, Zhenshan Tan, Qingrong Cheng, Cheng Chen, Xiaodong Gu
Recently, the cross-modal pre-training task has been a hotspot because of its wide application in various down-streaming researches including retrieval, captioning, question answering and so on. However, exiting methods adopt a one-stream pre-training model to explore the united vision-language representation for conducting cross-modal retrieval, which easily suffer from the calculation explosion. Moreover, although the conventional double-stream structures are quite efficient, they still lack the vital cross-modal interactions, resulting in low performances. Motivated by these challenges, we put forward a Contrastive Cross-Modal Knowledge Sharing Pre-training (COOKIE) to grasp the joint text-image representations. Structurally, COOKIE adopts the traditional double-stream structure because of the acceptable time consumption. To overcome the inherent defects of double-stream structure as mentioned above, we elaborately design two effective modules. Concretely, the first module is a weight-sharing transformer that builds on the head of the visual and textual encoders, aiming to semantically align text and image. This design enables visual and textual paths focus on the same semantics. The other one is three specially designed contrastive learning, aiming to share knowledge between different models. The shared cross-modal knowledge develops the study of unimodal representation greatly, promoting the single-modal retrieval tasks. Extensive experimental results on multi-modal matching researches that includes cross-modal retrieval, text matching, and image retrieval reveal the superiors in calculation efficiency and statistical indicators of our pre-training model.
PDF
点此查看论文截图
CCPL: Contrastive Coherence Preserving Loss for Versatile Style Transfer
Authors:Zijie Wu, Zhen Zhu, Junping Du, Xiang Bai
In this paper, we aim to devise a universally versatile style transfer method capable of performing artistic, photo-realistic, and video style transfer jointly, without seeing videos during training. Previous single-frame methods assume a strong constraint on the whole image to maintain temporal consistency, which could be violated in many cases. Instead, we make a mild and reasonable assumption that global inconsistency is dominated by local inconsistencies and devise a generic Contrastive Coherence Preserving Loss (CCPL) applied to local patches. CCPL can preserve the coherence of the content source during style transfer without degrading stylization. Moreover, it owns a neighbor-regulating mechanism, resulting in a vast reduction of local distortions and considerable visual quality improvement. Aside from its superior performance on versatile style transfer, it can be easily extended to other tasks, such as image-to-image translation. Besides, to better fuse content and style features, we propose Simple Covariance Transformation (SCT) to effectively align second-order statistics of the content feature with the style feature. Experiments demonstrate the effectiveness of the resulting model for versatile style transfer, when armed with CCPL.
PDF Accepted by ECCV2022 as an oral paper; code url: https://github.com/JarrentWu1031/CCPL; Video demo: https://youtu.be/c2NNNtDAoys