GAN


2022-07-12 更新

Memory Efficient Patch-based Training for INR-based GANs

Authors:Namwoo Lee, Hyunsu Kim, Gayoung Lee, Sungjoo Yoo, Yunjey Choi

Recent studies have shown remarkable progress in GANs based on implicit neural representation (INR) - an MLP that produces an RGB value given its (x, y) coordinate. They represent an image as a continuous version of the underlying 2D signal instead of a 2D array of pixels, which opens new horizons for GAN applications (e.g., zero-shot super-resolution, image outpainting). However, training existing approaches require a heavy computational cost proportional to the image resolution, since they compute an MLP operation for every (x, y) coordinate. To alleviate this issue, we propose a multi-stage patch-based training, a novel and scalable approach that can train INR-based GANs with a flexible computational cost regardless of the image resolution. Specifically, our method allows to generate and discriminate by patch to learn the local details of the image and learn global structural information by a novel reconstruction loss to enable efficient GAN training. We conduct experiments on several benchmark datasets to demonstrate that our approach enhances baseline models in GPU memory while maintaining FIDs at a reasonable level.
PDF 5 pages, 4 figures, arXiv preprint

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录