2022-07-09 更新
Softmax-free Linear Transformers
Authors:Jiachen Lu, Li Zhang, Junge Zhang, Xiatian Zhu, Hang Xu, Jianfeng Feng
Vision transformers (ViTs) have pushed the state-of-the-art for various visual recognition tasks by patch-wise image tokenization followed by stacked self-attention operations. Employing self-attention modules results in a quadratic complexity in both computation and memory usage. Various attempts on approximating the self-attention computation with linear complexity have thus been made in Natural Language Processing. However, an in-depth analysis in this work reveals that they are either theoretically flawed or empirically ineffective for visual recognition. We identify that their limitations are rooted in retaining the softmax self-attention during approximations. Specifically, conventional self-attention is computed by normalizing the scaled dot-product between token feature vectors. Preserving the softmax operation challenges any subsequent linearization efforts. Under this insight, a SOftmax-Free Transformer (abbreviated as SOFT) is proposed for the first time. To eliminate the softmax operator in self-attention, a Gaussian kernel function is adopted to replace the dot-product similarity. This enables a full self-attention matrix to be approximated via a low-rank matrix decomposition. The robustness of our approximation is achieved by calculating its Moore-Penrose inverse using a Newton-Raphson method. Further, an efficient symmetric normalization is introduced on the low-rank self-attention for enhancing model generalizability and transferability. Extensive experiments on ImageNet, COCO and ADE20K show that our SOFT significantly improves the computational efficiency of existing ViT variants. Crucially, with a linear complexity, much longer token sequences are permitted in SOFT, resulting in superior trade-off between accuracy and complexity.
PDF Extended journal version of NeurIPS conference submission arXiv:2110.11945
点此查看论文截图
VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training
Authors:Zhan Tong, Yibing Song, Jue Wang, Limin Wang
Pre-training video transformers on extra large-scale datasets is generally required to achieve premier performance on relatively small datasets. In this paper, we show that video masked autoencoders (VideoMAE) are data-efficient learners for self-supervised video pre-training (SSVP). We are inspired by the recent ImageMAE and propose customized video tube masking with an extremely high ratio. This simple design makes video reconstruction a more challenging self-supervision task, thus encouraging extracting more effective video representations during this pre-training process. We obtain three important findings on SSVP: (1) An extremely high proportion of masking ratio (i.e., 90% to 95%) still yields favorable performance of VideoMAE. The temporally redundant video content enables a higher masking ratio than that of images. (2) VideoMAE achieves impressive results on very small datasets (i.e., around 3k-4k videos) without using any extra data. (3) VideoMAE shows that data quality is more important than data quantity for SSVP. Domain shift between pre-training and target datasets is an important issue. Notably, our VideoMAE with the vanilla ViT can achieve 85.8% on Kinetics-400, 75.3% on Something-Something V2, 90.8% on UCF101, and 61.1% on HMDB51, without using any extra data. Code is available at https://github.com/MCG-NJU/VideoMAE.
PDF Technical report