2022-07-06 更新
Federated Self-supervised Learning for Video Understanding
Authors:Yasar Abbas Ur Rehman, Yan Gao, Jiajun Shen, Pedro Porto Buarque de Gusmao, Nicholas Lane
The ubiquity of camera-enabled mobile devices has lead to large amounts of unlabelled video data being produced at the edge. Although various self-supervised learning (SSL) methods have been proposed to harvest their latent spatio-temporal representations for task-specific training, practical challenges including privacy concerns and communication costs prevent SSL from being deployed at large scales. To mitigate these issues, we propose the use of Federated Learning (FL) to the task of video SSL. In this work, we evaluate the performance of current state-of-the-art (SOTA) video-SSL techniques and identify their shortcomings when integrated into the large-scale FL setting simulated with kinetics-400 dataset. We follow by proposing a novel federated SSL framework for video, dubbed FedVSSL, that integrates different aggregation strategies and partial weight updating. Extensive experiments demonstrate the effectiveness and significance of FedVSSL as it outperforms the centralized SOTA for the downstream retrieval task by 6.66% on UCF-101 and 5.13% on HMDB-51.
PDF
点此查看论文截图
GraphVid: It Only Takes a Few Nodes to Understand a Video
Authors:Eitan Kosman, Dotan Di Castro
We propose a concise representation of videos that encode perceptually meaningful features into graphs. With this representation, we aim to leverage the large amount of redundancies in videos and save computations. First, we construct superpixel-based graph representations of videos by considering superpixels as graph nodes and create spatial and temporal connections between adjacent superpixels. Then, we leverage Graph Convolutional Networks to process this representation and predict the desired output. As a result, we are able to train models with much fewer parameters, which translates into short training periods and a reduction in computation resource requirements. A comprehensive experimental study on the publicly available datasets Kinetics-400 and Charades shows that the proposed method is highly cost-effective and uses limited commodity hardware during training and inference. It reduces the computational requirements 10-fold while achieving results that are comparable to state-of-the-art methods. We believe that the proposed approach is a promising direction that could open the door to solving video understanding more efficiently and enable more resource limited users to thrive in this research field.
PDF Accepted to ECCV2022