2022-07-01 更新
Interventional Contrastive Learning with Meta Semantic Regularizer
Authors:Wenwen Qiang, Jiangmeng Li, Changwen Zheng, Bing Su, Hui Xiong
Contrastive learning (CL)-based self-supervised learning models learn visual representations in a pairwise manner. Although the prevailing CL model has achieved great progress, in this paper, we uncover an ever-overlooked phenomenon: When the CL model is trained with full images, the performance tested in full images is better than that in foreground areas; when the CL model is trained with foreground areas, the performance tested in full images is worse than that in foreground areas. This observation reveals that backgrounds in images may interfere with the model learning semantic information and their influence has not been fully eliminated. To tackle this issue, we build a Structural Causal Model (SCM) to model the background as a confounder. We propose a backdoor adjustment-based regularization method, namely Interventional Contrastive Learning with Meta Semantic Regularizer (ICL-MSR), to perform causal intervention towards the proposed SCM. ICL-MSR can be incorporated into any existing CL methods to alleviate background distractions from representation learning. Theoretically, we prove that ICL-MSR achieves a tighter error bound. Empirically, our experiments on multiple benchmark datasets demonstrate that ICL-MSR is able to improve the performances of different state-of-the-art CL methods.
PDF Accepted by ICML 2022
点此查看论文截图
Synthetic-to-Real Domain Adaptation using Contrastive Unpaired Translation
Authors:Benedikt T. Imbusch, Max Schwarz, Sven Behnke
The usefulness of deep learning models in robotics is largely dependent on the availability of training data. Manual annotation of training data is often infeasible. Synthetic data is a viable alternative, but suffers from domain gap. We propose a multi-step method to obtain training data without manual annotation effort: From 3D object meshes, we generate images using a modern synthesis pipeline. We utilize a state-of-the-art image-to-image translation method to adapt the synthetic images to the real domain, minimizing the domain gap in a learned manner. The translation network is trained from unpaired images, i.e. just requires an un-annotated collection of real images. The generated and refined images can then be used to train deep learning models for a particular task. We also propose and evaluate extensions to the translation method that further increase performance, such as patch-based training, which shortens training time and increases global consistency. We evaluate our method and demonstrate its effectiveness on two robotic datasets. We finally give insight into the learned refinement operations.
PDF
点此查看论文截图
FedRare: Federated Learning with Intra- and Inter-Client Contrast for Effective Rare Disease Classification
Authors:Nannan Wu, Li Yu, Xin Yang, Kwang-Ting Cheng, Zengqiang Yan
Federated learning (FL), enabling different medical institutions or clients to train a model collaboratively without data privacy leakage, has drawn great attention in medical imaging communities recently. Though inter-client data heterogeneity has been thoroughly studied, the class imbalance problem due to the existence of rare diseases still is under-explored. In this paper, we propose a novel FL framework FedRare for medical image classification especially on dealing with data heterogeneity with the existence of rare diseases. In FedRare, each client trains a model locally to extract highly-separable latent features for classification via intra-client supervised contrastive learning. Considering the limited data on rare diseases, we build positive sample queues for augmentation (i.e. data re-sampling). The server in FedRare would collect the latent features from clients and automatically select the most reliable latent features as guidance sent back to clients. Then, each client is jointly trained by an inter-client contrastive loss to align its latent features to the federated latent features of full classes. In this way, the parameter/feature variances across clients are effectively minimized, leading to better convergence and performance improvements. Experimental results on the publicly-available dataset for skin lesion diagnosis demonstrate FedRare’s superior performance. Under the 10-client federated setting where four clients have no rare disease samples, FedRare achieves an average increase of 9.60% and 5.90% in balanced accuracy compared to the baseline framework FedAvg and the state-of-the-art approach FedIRM respectively. Considering the board existence of rare diseases in clinical scenarios, we believe FedRare would benefit future FL framework design for medical image classification. The source code of this paper is publicly available at https://github.com/wnn2000/FedRare.
PDF
点此查看论文截图
TINC: Temporally Informed Non-Contrastive Learning for Disease Progression Modeling in Retinal OCT Volumes
Authors:Taha Emre, Arunava Chakravarty, Antoine Rivail, Sophie Riedl, Ursula Schmidt-Erfurth, Hrvoje Bogunović
Recent contrastive learning methods achieved state-of-the-art in low label regimes. However, the training requires large batch sizes and heavy augmentations to create multiple views of an image. With non-contrastive methods, the negatives are implicitly incorporated in the loss, allowing different images and modalities as pairs. Although the meta-information (i.e., age, sex) in medical imaging is abundant, the annotations are noisy and prone to class imbalance. In this work, we exploited already existing temporal information (different visits from a patient) in a longitudinal optical coherence tomography (OCT) dataset using temporally informed non-contrastive loss (TINC) without increasing complexity and need for negative pairs. Moreover, our novel pair-forming scheme can avoid heavy augmentations and implicitly incorporates the temporal information in the pairs. Finally, these representations learned from the pretraining are more successful in predicting disease progression where the temporal information is crucial for the downstream task. More specifically, our model outperforms existing models in predicting the risk of conversion within a time frame from intermediate age-related macular degeneration (AMD) to the late wet-AMD stage.
PDF Accepted at MICCAI 2022