I2I Translation


2022-07-01 更新

CoMoGAN: continuous model-guided image-to-image translation

Authors:Fabio Pizzati, Pietro Cerri, Raoul de Charette

CoMoGAN is a continuous GAN relying on the unsupervised reorganization of the target data on a functional manifold. To that matter, we introduce a new Functional Instance Normalization layer and residual mechanism, which together disentangle image content from position on target manifold. We rely on naive physics-inspired models to guide the training while allowing private model/translations features. CoMoGAN can be used with any GAN backbone and allows new types of image translation, such as cyclic image translation like timelapse generation, or detached linear translation. On all datasets, it outperforms the literature. Our code is available at http://github.com/cv-rits/CoMoGAN .
PDF CVPR 2021 oral

点此查看论文截图

Cut Inner Layers: A Structured Pruning Strategy for Efficient U-Net GANs

Authors:Bo-Kyeong Kim, Shinkook Choi, Hancheol Park

Pruning effectively compresses overparameterized models. Despite the success of pruning methods for discriminative models, applying them for generative models has been relatively rarely approached. This study conducts structured pruning on U-Net generators of conditional GANs. A per-layer sensitivity analysis confirms that many unnecessary filters exist in the innermost layers near the bottleneck and can be substantially pruned. Based on this observation, we prune these filters from multiple inner layers or suggest alternative architectures by completely eliminating the layers. We evaluate our approach with Pix2Pix for image-to-image translation and Wav2Lip for speech-driven talking face generation. Our method outperforms global pruning baselines, demonstrating the importance of properly considering where to prune for U-Net generators.
PDF ICML Workshop on Hardware Aware Efficient Training, 2022

点此查看论文截图

Test-time image-to-image translation ensembling improves out-of-distribution generalization in histopathology

Authors:Marin Scalbert, Maria Vakalopoulou, Florent Couzinié-Devy

Histopathology whole slide images (WSIs) can reveal significant inter-hospital variability such as illumination, color or optical artifacts. These variations, caused by the use of different scanning protocols across medical centers (staining, scanner), can strongly harm algorithms generalization on unseen protocols. This motivates development of new methods to limit such drop of performances. In this paper, to enhance robustness on unseen target protocols, we propose a new test-time data augmentation based on multi domain image-to-image translation. It allows to project images from unseen protocol into each source domain before classifying them and ensembling the predictions. This test-time augmentation method results in a significant boost of performances for domain generalization. To demonstrate its effectiveness, our method has been evaluated on 2 different histopathology tasks where it outperforms conventional domain generalization, standard H&E specific color augmentation/normalization and standard test-time augmentation techniques. Our code is publicly available at https://gitlab.com/vitadx/articles/test-time-i2i-translation-ensembling.
PDF Accepted at MICCAI2022 Conference

点此查看论文截图

Synthetic-to-Real Domain Adaptation using Contrastive Unpaired Translation

Authors:Benedikt T. Imbusch, Max Schwarz, Sven Behnke

The usefulness of deep learning models in robotics is largely dependent on the availability of training data. Manual annotation of training data is often infeasible. Synthetic data is a viable alternative, but suffers from domain gap. We propose a multi-step method to obtain training data without manual annotation effort: From 3D object meshes, we generate images using a modern synthesis pipeline. We utilize a state-of-the-art image-to-image translation method to adapt the synthetic images to the real domain, minimizing the domain gap in a learned manner. The translation network is trained from unpaired images, i.e. just requires an un-annotated collection of real images. The generated and refined images can then be used to train deep learning models for a particular task. We also propose and evaluate extensions to the translation method that further increase performance, such as patch-based training, which shortens training time and increases global consistency. We evaluate our method and demonstrate its effectiveness on two robotic datasets. We finally give insight into the learned refinement operations.
PDF

点此查看论文截图

Revisiting Label Smoothing and Knowledge Distillation Compatibility: What was Missing?

Authors:Keshigeyan Chandrasegaran, Ngoc-Trung Tran, Yunqing Zhao, Ngai-Man Cheung

This work investigates the compatibility between label smoothing (LS) and knowledge distillation (KD). Contemporary findings addressing this thesis statement take dichotomous standpoints: Muller et al. (2019) and Shen et al. (2021b). Critically, there is no effort to understand and resolve these contradictory findings, leaving the primal question — to smooth or not to smooth a teacher network? — unanswered. The main contributions of our work are the discovery, analysis and validation of systematic diffusion as the missing concept which is instrumental in understanding and resolving these contradictory findings. This systematic diffusion essentially curtails the benefits of distilling from an LS-trained teacher, thereby rendering KD at increased temperatures ineffective. Our discovery is comprehensively supported by large-scale experiments, analyses and case studies including image classification, neural machine translation and compact student distillation tasks spanning across multiple datasets and teacher-student architectures. Based on our analysis, we suggest practitioners to use an LS-trained teacher with a low-temperature transfer to achieve high performance students. Code and models are available at https://keshik6.github.io/revisiting-ls-kd-compatibility/
PDF ICML 2022; 27 pages

点此查看论文截图

Supervised Visual Attention for Simultaneous Multimodal Machine Translation

Authors:Veneta Haralampieva, Ozan Caglayan, Lucia Specia

Recently, there has been a surge in research in multimodal machine translation (MMT), where additional modalities such as images are used to improve translation quality of textual systems. A particular use for such multimodal systems is the task of simultaneous machine translation, where visual context has been shown to complement the partial information provided by the source sentence, especially in the early phases of translation. In this paper, we propose the first Transformer-based simultaneous MMT architecture, which has not been previously explored in the field. Additionally, we extend this model with an auxiliary supervision signal that guides its visual attention mechanism using labelled phrase-region alignments. We perform comprehensive experiments on three language directions and conduct thorough quantitative and qualitative analyses using both automatic metrics and manual inspection. Our results show that (i) supervised visual attention consistently improves the translation quality of the MMT models, and (ii) fine-tuning the MMT with supervision loss enabled leads to better performance than training the MMT from scratch. Compared to the state-of-the-art, our proposed model achieves improvements of up to 2.3 BLEU and 3.5 METEOR points.
PDF Accepted to Journal of Artificial Intelligence Research (JAIR)

点此查看论文截图

SoloGAN: Multi-domain Multimodal Unpaired Image-to-Image Translation via a Single Generative Adversarial Network

Authors:Shihua Huang, Cheng He, Ran Cheng

Despite significant advances in image-to-image (I2I) translation with generative adversarial networks (GANs), it remains challenging to effectively translate an image to a set of diverse images in multiple target domains using a single pair of generator and discriminator. Existing I2I translation methods adopt multiple domain-specific content encoders for different domains, where each domain-specific content encoder is trained with images from the same domain only. Nevertheless, we argue that the content (domain-invariance) features should be learned from images among all of the domains. Consequently, each domain-specific content encoder of existing schemes fails to extract the domain-invariant features efficiently. To address this issue, we present a flexible and general SoloGAN model for efficient multimodal I2I translation among multiple domains with unpaired data. In contrast to existing methods, the SoloGAN algorithm uses a single projection discriminator with an additional auxiliary classifier and shares the encoder and generator for all domains. Consequently, the SoloGAN can be trained effectively with images from all domains such that the domain-invariance content representation can be efficiently extracted. Qualitative and quantitative results over a wide range of datasets against several counterparts and variants of the SoloGAN demonstrate the merits of the method, especially for challenging I2I translation datasets, i.e., datasets involving extreme shape variations or need to keep the complex backgrounds unchanged after translations. Furthermore, we demonstrate the contribution of each component in SoloGAN by ablation studies.
PDF pages 14, 15 figures

点此查看论文截图

Learning Symmetric Rules with SATNet

Authors:Sangho Lim, Eun-Gyeol Oh, Hongseok Yang

SATNet is a differentiable constraint solver with a custom backpropagation algorithm, which can be used as a layer in a deep-learning system. It is a promising proposal for bridging deep learning and logical reasoning. In fact, SATNet has been successfully applied to learn, among others, the rules of a complex logical puzzle, such as Sudoku, just from input and output pairs where inputs are given as images. In this paper, we show how to improve the learning of SATNet by exploiting symmetries in the target rules of a given but unknown logical puzzle or more generally a logical formula. We present SymSATNet, a variant of SATNet that translates the given symmetries of the target rules to a condition on the parameters of SATNet and requires that the parameters should have a particular parametric form that guarantees the condition. The requirement dramatically reduces the number of parameters to learn for the rules with enough symmetries, and makes the parameter learning of SymSATNet much easier than that of SATNet. We also describe a technique for automatically discovering symmetries of the target rules from examples. Our experiments with Sudoku and Rubik’s cube show the substantial improvement of SymSATNet over the baseline SATNet.
PDF 22 pages, 3 figures, the first two authors contributed equally to this work

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录